
 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 1

 2 STATIC UML DIAGRAMS

Class Diagram – Elaboration – Domain Model –Finding conceptual classes and description classes –

Associations – Attributes – Domain model refinement – Finding conceptual class Hierarchies –

Aggregation and Composition -Relationship between sequence diagrams and use cases – When to use

Class Diagrams

1 Class Diagram
➢ UML includes class diagrams (or design class diagram (DCD)) to illustrate classes, interfaces and

their associations.

➢ They are used for static object modeling. It represents the static view of an application.

➢ A UML class box used to illustrate software classes often shows three compartments.

✓first compartment illustrates the class name

✓second compartment illustrates the attributes

✓third illustrates the methods of the class

➢ Visibility, parameters and compartments are optional

➢ The class diagram describes the attribute and operations of a class and also the constraints imposed

on the system.

➢ The class diagrams are widely used in the modeling of object oriented systems because they are the

only UML diagram which can be mapped directly with object orient languages.

➢ The class diagram shows the collection of classes, interfaces, associations, collaborations and

constraints. It is also known as Structural diagram.

Figure: Class Notation

➢ Class diagrams can be applied in two perspectives:

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 2

1. Conceptual perspective

2. Software perspective

Figure: UML class diagrams in two perspectives

Figure: Examples of Class Diagram

➢ A UML classifier is a model element that describes behavioral and structure features. They are a

generalization of many of the elements of the UML, including classes, interfaces, use cases and

actors.

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 3

➢ A UML constraint is a restriction or condition on a UML element. It is visualized in text between

braces.

Example: {size>=0}

Ways to show UML attributes

➢ Attributes of a classifier (also called Structural properties in the UML) are shown several ways:

• Attribute text notation

• Association line notation

• Both together

The full format of the attribute text notation is: visibility

name: type multiplicity = default { property-string }

Relationships used in class diagrams:

 Association

• Dependency

• Aggregation

• Composition

• Generalization

Association: represents relationship between instances of classes.

 Example: A person works for a company

➢ Each association has two ends, each end is attached to one of the classes in the association.

➢ The end should be explicitly named with a label.

➢ This label is called as a role name.

➢ This label is called as a role name.

➢ Association ends are often called as roles

➢ An association end also has multiplicity which is an indication of how many elements participate

in the given relationship.

➢ A qualified association has a qualifier that is used to select an object (or objects) from a larger set

of related objects, based upon the qualifier key.

➢ An association class allows us to treat an association itself as a class, and model it with attributes,

operations, and other features.

➢ The UML dependency relationship indicates that one element (of any kind, including classes, use

cases, and so on) has knowledge of another element.

➢ It is illustrated with a dashed arrow line.

➢ In class diagrams the dependency relationship is useful to depict non-attribute visibility between

classes; in other words, parameter, global, or locally declared visibility.

Generalization is the activity of identifying commonality among concepts and defining superclass and

subclass relationships.

➢ For example, the concepts CashPayment, CreditPayment and CheckPayment are all very similar

and it is possible to organize them into a generalization, specification, class hierarchy. Aggregation

is a vague kind of association in the UML that loosely suggests Whole -part relationships. It has no

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 4

meaningful distinct semantics in the UML versus a plain association, but the term is defined in the

UML.

Composition, also known as composite aggregation, is a strong kind of whole –part aggregation and

is useful to show in some models. It is an instance of a part belongs to only one composite instance.

Navigability is a property of the role that indicates that it is possible to navigate uni-directionally across

the association from objects of the source to target class. Navigability implies visibility, usually

attribute visibility

Operations & Methods

A UML operation is a declaration, with a name, parameters, return type, exceptions list and possibly

a set of constraints of pre and post conditions.

A UML method is the implementation of an operation, if constraints are defined, the method must

satisfy them.

2 Elaboration
➢ Elaboration is the initial series of iterations during which:

- The majority of requirements are discovered and stabilized.

- The major risks are mitigated or retired.

- The core architectural elements are implemented and proven.

Elaboration: builds the core architecture, resolve the high-risk elements, define most requirements,

and estimate the overall schedule and resources

➢ During inception, the Vision summarizes the project idea in a form to help decision makers

determine if it is worth continuing, and where to start.

➢ Through the elaboration iterations, the "vision" and the Vision are refined, based upon feedback

from incrementally building parts of the system, adapting, and multiple requirements workshops

over several development iterations.

➢ Elaboration often consists of between two and four iterations ➢ Each iteration is recommended to

be between two and six weeks.

➢ Each iteration is timeboxed, meaning its end date is fixed

➢ Elaboration is not a design phase or a phase when the models are fully developed in preparation for

implementation in the construction step—that would be an example of superimposing waterfall ideas

on to iterative development and the UP.

➢ During the Elaboration phase the project team is expected to capture a healthy majority of the system

requirements.

➢ However, the primary goals of Elaboration are to address known risk factors and to establish and

validate the system architecture.

➢ Common processes undertaken in this phase include the creation of use case diagrams, conceptual

diagrams (class diagrams with only basic notation) and package diagrams (architectural diagrams).

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 5

o Refined vision o Core architecture o Resolution of high risk

o Identification of most requirement and scope

Key ideas and best practices that will manifest in Elaboration include:

o do short timeboxed risk-driven iterations o start programming early o adaptively

design, implement, and test the core and risky parts of the architecture o test early, often,

realistically . o adapt based on feedback from tests, users, developers . o write most of

the use cases and other requirements in detail, through a series of workshops, once per

elaboration iteration.

2.1.1 ELABORATION ARTIFACTS:

1. Domain Model:

o Visualization of domain concepts. It is similar to static information model of the domain

entities.

2. Design Model:

o Set of diagrams that describes the logic design .This include software class diagrams, object

interaction diagrams, package diagrams etc.

3. Software architecture document:

o Summary of the outstanding design ideas and their motivation in the system.

4. Data model:

o Collection of conceptual tools for describing data,data relationships, data semantics and

consistency constraints.

5. Use case story boards and UI prototypes:

o Description of the user interface, path of investigation, usability models etc.

Artifact Comment

Software Architecture

Document

A learning aid that summarizes the key architectural issues and their

resolution in the design. It is a summary of the out-standing design ideas and

their motivation in the system.

Data Model

This includes the database schemas, and the mapping strategies between

object and non-object representations.

Test Model

A description of what will be tested, and how.

Implementation Model

This is the actual implementation - the source code, executables, database,

and so on.

Use-Case Storyboards,
A description of the user interface, paths of navigation, usability models,

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 6

UI Prototypes

and so forth.

➢ Elaboration phase testing is important, to obtain feedback, adapt, and prove that the core is robust.

➢ The majority of terms will be discovered and elaborated in the Glossary during this phase.

Inception Elaboration

It is about initiating the project

It is about creating a partial but working

version of the system-an executable

architectural baseline.

Goals includes-

▪ Establishing feasibility

▪ Creating a business case

▪ Capturing essential requirements

▪ Identifying critical risks

Goals includes

▪ Create an executable architectural

baseline

▪ Refine the risk assessment

▪ Define quality attributes

▪ Capture use cases to 80% of the

functional requirements

It focus on requirements and analysis workflows
It focuses on requirements, analysis, design,

implementation and test

Milestone makes use of goal oriented approach

which sets certain goals that must be achieved for

the milestone to have been reached. The

milestone for inception is the life cycle objectives

that include defining system scope with the help

of use case models, capturing key requirements.

Milestone is life cycle architecture. It includes

UML Static model, UML dynamic model,

UML case model, revising risk assessment

through, etc

Example: University management system:

Requirements:

• Register courses

• Change password

• View timetable

• Look up course description

• Change student personal details

• Ability to view exam results

Architecture baseline:

• Early version of the final system known as

architecture baseline. It is a subset of the
entire system. It includes the subsystems,
components and nodes

• The architecture is influenced not only by

the architecturally significant use cases, but

also platform, legacy system that system

needs to be integrated, standard and

policies

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 7

Identifying stakeholders for business case:

1.Stakeholders:

Student: Want to register for the courses for

an upcoming semester

Capturing use cases:

USECASE 1:register for courses

Precondition: Student must be logged on to the

system

Program advisor: Wants to ensure that all the

prerequisites are met for the student’s courses.

2.Stakeholders:

Students: Would like to have a detailed

description of the course,

 course requirements, the instructor and

the class times

USE CASE2 :look up a course in the course

directory

Precondition: Student must be logged into the

system.

3.Stakeholders:

Students: Need to have updated personal

information so they can be contacted

Use case 3: Change student personal information

Precondition: Student is logged into the system.

3 Domain Model
- What is a domain model?

- Motivation: why create a domain model?

- Guideline: how to create a domain model?

3.1 What is a domain model?
➢ A domain model is a visual representation of conceptual classes or real-situation objects in a

domain.

➢ Domain models have also been called conceptual models, domain object models and analysis

object models.

Definition: In the UP, ―Domain Model‖ means a representation of real-situation conceptual classes,

not of software objects. The term does not mean a set of diagrams describing software classes, the

domain layer of a software architecture or software objects with responsibilities.

➢ The UP Domain model is a specialization of the UP Business Object Model [BOM] ―focusing on

explaining things and products important to a business domain‖.

➢ Applying UML notation, a domain model is illustrated with a set of class diagrams in which no

operations (method signature) are defined. It provides a conceptual perspective. It may show:

• Domain objects or conceptual classes

• Associations between conceptual classes

• Attributes of conceptual classes

 Definition: why call a domain model a “visual dictionary”?

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 8

➢ It visualizes and relates words or concepts in the domain. ➢ It also shows an abstraction of the

conceptual classes

III Year –CSE 9

Figure: Partial domain model- a visual dictionary

➢ The information it illustrates (using UML notation) could alternatively have been expressed in plain

text (in the UP glossary).

➢ The domain model is a visual dictionary of the noteworthy abstractions, domain vocabulary, and

information content of the domain.

 Definition: Is a domain model picture of software business objects?

➢ A UP Domain Model is a visualization of things in a real situation domain of interest, not of software

objects such as Java or C# classes, or software objects with responsibilities.

➢ The following elements are not suitable in a domain model:

▪ Software artifacts, such as a window or a database, unless the domain being modeled are of

software concepts, such as a model of graphical user interfaces.

▪ Responsibilities or methods.

Definition: What are two traditional meanings of “domain model”?

➢ Domain model is conceptual perspective of objects in a real situation of the world, not a software

perspective.

➢ It has been used to mean ―the domain layer of software objects‖. That is, the layer of software objects

below the presentation or UI layer that is composed of domain objects- software objects that represent

things in the problem domain space with related ―business logic‖ or

―domain logic‖ methods.

➢ For example, a Board software class with a getSquare method.

Definition: What are conceptual classes?

A conceptual class is an idea, thing, or object.

CS8592 – Object Oriented Analysis and Design Unit - I I

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 10

A conceptual class may be considered in terms of its symbol, intension, and extension.

• Symbol – words or images representing a conceptual class.

• Intension – the definition of a conceptual class.

• Extension – the set of examples to which the conceptual class applies.

Figure: a Conceptual class has a symbol, intension and extension

Definition: What are Description classes?

➢ A Description class contains information that describes something else.

➢ For example, a ProductDescription that records the price, picture, and text descriptions of an item.

This was first named the Item-Descriptor pattern.

➢ The need for description classes :

- An item instance represents a physical item in a store; it may have a serial number

- An item has description, price, and itemID

- A ProductDescription class records information about items

- Even if all inventoried items are sold and corresponding item software instances are deleted,

the Product Description still remains.

 Definition: Are domain and data model the same thing?

➢ A domain model is not a data model, so do not exclude a class simply because the requirements don’t

indicate any obvious need to remember information about it or because the conceptual class has no

attributes.

3.2 Motivation: why create a domain model?
Motivation: lower representational gap with OO modeling

This is a key idea in OO: use software class names in the domain layer inspired from names in the

domain model, with objects having domain-familiar information and responsibilities. This supports a

low representational gap between our mental and software models. And that’s not just a philosophica l

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 11

nicety- it has a practical time and money impact. For example, a source code payroll program written

in 1953: 100001010100011110101011011010001010101010101111010101….

As compute science people, we know it runs, but the gap between this software representation

and our mental model of the payroll domain is huge, that profoundly affects comprehension (and

modification) of the software. OO modeling can lower that gap.

3.3 Guideline: How To Create A Domain Model

Bounded by the current iteration requirements under design:

1. Find the conceptual classes

2. Draw them as classes in a UML class diagram.

3. Add associations and attributes.

3.4 UML DOMAIN MODEL
➢ A UML domain model will relate objects in the system domain to each other. It will define concepts

and terms.

➢ Objects in the domain model can be:

➢ Physical objects.

➢ Abstract concepts.

➢ A domain modeling process includes the following steps:

o Model and document business processes first.

o Select a candidate business process and work with the business domain experts to

document it using the ubiquitous language.

o Identify all the services that are required for the candidate business process. o These

services can be atomic orchestrated in nature. o They can also be business or

infrastructure. o Identify and document the state behavior of the objects used by services

identified in the previous step.

3.5 ADVANTAGES OF DOMAIN MODELLING
➢ Domain driven design (DDD) is a powerful concept that will change the way modelers,

architects, developers and testers will look at the software once the team is trained in DDD.

➢ A domain model creates q web of interconnected objects, where each object represents some

meaningful individual, whether as large as a corporation or as small as a single line on an order

form.

4 Finding conceptual classes and description classes

4.1 Finding conceptual classes
Three strategies to find conceptual classes:

1. Reuse or modify existing models.

2. Use a category list 3. Identify noun phrases.

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 12

1. Reuse or modify existing models

This is the first, best, and usually easiest approach.

There are published and well known domain models and data models like

• Inventory

• Finance

• Health

These can be modified into domain model.

Reusing existing models is excellent, but outside our scope.

2. Use a category list

The second method, using a category list, is also useful. Some of the categories found in

• POS

• Airline Reservation are listed below

Conceptual Class Category Example

Physical or tangible objects
Item, Register Airplane

Specifications, designs, or descriptions
ProductSpecification

FlightDescription

Place of transaction, Place of service
Store

Airport, Plane, Seat

Business Transactions
Sale, Payment

Reservation

Transaction line items SalesLineItem

Where is the transaction recorded?
Register, Ledger FlightManifest

Catalogs
ProductCatalog FlightCatalog

Roles of people
Cashier pilot

Containers of other things
Store,Bin Airplane

Things in a container

Item

Passenger

Other computer or electro-mechanical

CreditPaymentAuthorizationSystem Air

traffic Control

Abstract noun concepts

Hunger

Acrophobia

organizations
SalesDepartment ObjectAirline

 Noun Phrase Identification

➢ Identify the nouns and noun phrases in textual descriptions of a domain, and consider them as

candidate conceptual classes or attributes.

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 13

➢ The fully dressed usecases are an excellent description to draw from for this analysis. For example,

the current scenario of the ProcessSale usecase can be used.

Main Success Scenario (or Basic Flow):

1. Customer arrives at a POS checkout with goods and/or services to purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. System records sale line item and presents item description, price, and running total.

Price calculated from a set of price rules. Cashier repeats steps 2-3 until indicates done.

5. System presents total with taxes calculated.

6. Cashier tells Customer the total, and asks for payment.

7. Customer pays and System handles payment.

8. System logs the completed sale and sends sale and payment information to the external

Accounting (for accounting and commissions) and Inventory systems (to update inventory).

9. System presents receipt.

10. Customer leaves with receipt and goods (if any).

Extensions (or Alternative Flows):

7a.Payingbycash:

1. Cashier enters the cash amount tendered

2. System presents the balance due, and releases the cash drawer.

3. Cashier deposits cash tendered and returns balance in cash to Customer.

4. System records the cash payment.

➢ The domain model is a visualization of noteworthy domain concepts and vocabulary. In the use cases,

thus they are a rich source to mine via noun phrase identification.

➢ A weakness of this approach is the imprecision of natural language; different noun phrases may

represent the same conceptual class or attribute, among other ambiguities.

➢ It is recommended in combination with the Conceptual Class Category List technique.

4.1.1 Example: Find and Draw Conceptual Classes - POS domain

As an example the following are identified list of conceptual classes for Process Sale scenario:

Sale

CashPayment

SalesLineItem

Item

Register

Ledger

Cashier

Customer

Store

ProductDescription

ProductCatalog

Register

Item Store Sale

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 14

Product catalog

 Product

Description

Fig: Initial POS Domain Model

Draw them in UML Class Diagrams – As in below figure

Figure: Example of domain model with UML class Diagram notation

4.2 DESCRIPTION CLASSES
4.2.1 Guideline: When to model with Description classes ➢ A

description class contains information that describes something.

➢ For example, a product Description of an item, the price, picture and text description of an item.

➢ Test is a description class which is for the description of the tests conducted for some patient.

This class contains the information such as name of the test, date on which it is conducted,

description of the test, and test results.

4.2.2 Why Description classes are used:

➢ The need for description classes is common in many domain models.

➢ Following are the situations in which the description class needs to be maintained:

- Whenever there is a need for describing some item or service then the description class must

be defined.

- When there is a need to reduce the redundant or duplicated information then the description

class is used.

- If there exists some class in such a manner that deleting of this class may loss some other

important information which needs to be maintained for the implementation of the system.

Sales LineItem Cashier Customer Ledger

Cash Payment

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 15

4.2.3 Example:

4.2.4 Guideline-When Are Description Classes Useful

Add a description class when

➢ There needs to be a description about an item or service, independent of the current existence

by any items or services.

➢ Deleting instances of things they describe results in a loss of information that needs to be

maintained, but incorrectly associated with deleted thing.

➢ It reduces redundancy or duplication of information.

5 Associations
➢ An association is a relationship between classes (more precisely, instances of these classes) that

indicates some meaningful and interesting connections.

➢ Associations are defined as semantic relationship between two or more classifiers that involve

connections among their instances.

➢ It is represented as a solid line connecting 2 class. Avoid too many associations to a domain model.

Figure: Association Relationship How

to name an association in UML:

➢ Association names should start with a capital letter, since an association represents a classifier of

links between instances; in the UML, classifiers should start with a capital letter.

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 16

➢ Association defines the relationship between two or more classes in the System. These generally

relates to the one object having instance or reference of another object inside it.

Associations in UML can be implemented using following ways:

A. Multiplicity

B. Aggregation

C. Composition

Roles may optionally have

• Multiplicity expression

• Name

• Navigability

Multiplicity

Multiplicity defines how many instances of class A can be associated with one instance of a class B.

Figure: Multiplicity of an Association

Notation Description

1

0..1

Only One Instance

Zero or One Instance

* Many Instance

0..* Zero or Many Instance

1..* One or Many Instance

Navigation

Item Store Stocks

*

multiplicity of the role

1

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 17

UML uses association navigation or navigability to specify a role affiliated with each other at the

end of association line. The reading direction arrow indicates the direction to read the association

name called navigability.

Multiple associations between 2 classes

Two classes may have multiple (more than one) associations between them

 *

 *

Method of finding Associations using Common Association List

1. POS

2. Monopoly

3. Airline Reservation System

Finding Association With A Common Association List

Category Examples

A is a transaction related to another

transaction

CashPayment – Sale

Cancellation - Reservation

A is a line item of a transaction B SalesLineItem - Sale

A is a product or service for a transaction

B(or Item – SalesLineItem

A is a role related to a transaction B

Customer – Payment

Passenger - Ticket

A is a physical or logical part of B

Drawer-Register

Square-Board

Seat-Air plane

Flight

 Flies-to

Flies-

1

Airport

 from 1

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 18

A is physically or logically contained in /or B

Register – Store

Item-Shelf

Square-Board

Passenger - Airline

A is a description for B

ProductDescription – Item

FlightDescription - Flight

A is known

/logged/recorded/reported/captured in B

Sale – Register

Piece – Square

Reservation - Flightmanifest

A is a member of B

Cashier – Store

Player – monnopolyGame

Pilot - Airline

A is an organizational Subunit of B

Department – Store

Maintenance - Airline

A uses or manages or owns B

Cashier – Register

Player – Piece

Pilot - Airplane

A is next to B

SalesLineItem – SalesLineItem

Square – Square

City - City

High-Priority Associations

Some of the high-priority association categories that are in variably useful to include in a domain

model:

• A is a physical or logical part of B.

• A is physically or logically contained in/on B.

• A is recorded in B.

Naming Association

Association names should start with a capital letter, since an association represents a classifier

of links between instances; in the UML, classifiers should start with a capital letter. Two common and

equally legal formats for a compound association name are:

• Paid-by

• PaidBy Association Class

➢ An association may be refined to have its own set of features, that is, features that do not belong to

any of the connected classifiers but rather to the association itself. Such an association is called an

association class.

➢ It is both an association, connecting a set of classifiers and a class, and as such could have features

and might be included in other associations.

➢ An association class can be seen as an association that also has class properties, or as a class that also

has association properties.

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 19

➢ An association class is shown as a class symbol attached to the association path by a dashed line.

➢ The association path and the association class symbol represent the same underlying model element,

which has a single name.

➢ The association name may be placed on the path, in the class symbol, or on both, but they must be

the same name. Link

➢ Link is an instance of an association. It is a tuple with one value for the each end of the association,

where each value is an instance of the type of the end.

➢ Association has at least two ends, represented by properties (end properties).

➢ Link is rendered using the same notation as for an association. Solid line connects instances rather

than classifiers.

➢ Name of the link could be shown underlined though it is not required. End names (roles) and

navigation arrows can be shown.

Link Wrote between instance p of Professor playing author role and instance b of Book in the textbook

role.

6 Attributes
An attribute is a logical data value of an object. It is useful to identify those conceptual classes that

are needed to satisfy the information requirements of the current scenarios under development.

When to show attributes?

Include attributes that the requirements suggest or imply a need to remember information

UML Notation

In the class representation, attributes are shown in the second compartment. Attribute type is optional.

Figure :Attribute Notation

The full syntax for an attribute in the UML is:

Visibility name: type multiplicity=default {property-string}.

http://www.uml-diagrams.org/uml-core.html#instance-core
http://www.uml-diagrams.org/uml-core.html#instance-core
http://www.uml-diagrams.org/association.html#association-end
http://www.uml-diagrams.org/association.html#association-end

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 20

Derived attribute:

➢ If an attribute is derived from some other information it is called derived attributes.

➢ A quantity that can be calculated from other values, such as role multiplicities, is a derived attribute,

designated in UML by a leading slash symbol.

➢ The total attribute in the Sale can be calculated or derived from the information in the SalesLineItem.

Figure: Derived Attribute - Recording the quantity of items sold in a line item.

Data type attribute:

It is a primitive data type such as

• Numbers

• Character

• Boolean

• String

• Date(or DateTime)

• Time

 Other types used are:

• Address

• Color

• Geometrics

• Phone number ZIP or postal code

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 21

• Enumerations

Worse

 Better

 Figure:

Relate with association not with attribute

In place of complex concepts, associations are used instead of attributes.

 Worse

 Better

Figure: Don’t show complex concept as attributes, use associations

➢ An attribute should be what the UML standard calls a data type: a set of values for which unique

identity is not meaningful. Numbers, strings, Booleans, dates, times, phone numbers, and addresses

are examples of data types. Values of these types are called value objects.

Relating Types

 - Conceptual classes in a domain model should be related by associations, not attributes In

particular, an attribute should not be used as a kind of foreign key.

 Worse
a "simple" attribute, but being

 used as a foreign

key to relate to
 another object

Cashier 1 Uses 1 Register

name number

Flight
1 Flies-to 1

Airport

Cashier

name

currentRegisterNumber

Cashier

name
currentRegister

not a "simple" attribute

Flight

destination

destination is a complex
concept

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 22

 Better

Figure: Don’t use attributes as Foreign Key

 Quantities and Units

Quantities with associated units should be represented either as conceptual classes or as attributes of

specialized types that imply units (e.g. Money or Weight).

Guidelines:

Represent what may initially be considered a primitive data type (such as a number or string) as a non-

primitive class if:

1. It is composed of separate sections.

- phone number, name of person

2. There are operations usually associated with it, such as parsing or validation.

- Social security number

3. It has other attributes.

- Promotional price could have a start (effective) date and end date

4. It is a quantity with a unit.

- Payment amount has a unit of currency

5. It is an abstraction of one or more types with some of these qualities.

Cashier 1 Uses 1
Register

name number

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 23

Item identifier in the sales domain is a generalization of types such as Universal Product Code (UPC) or

European Article Number (EAN).

7 Domain model refinement
➢ Domain model a representation of real world conceptual classes, not of software components.

Domain model is a tool of communication.

➢ Domain modeling is driven by use cases as they become known.

➢ A report object of other information in domain model is not useful since all its information is derived

from other resources.

➢ Domain model can be refined by adding the attributes to the class and showing the associations

among these classes.

In the domain model refinement, the fundamental concepts are:

1. Generalization

2. Specialization

3. Conceptual class hierarchies Generalization:

➢ Generalization is the activity of identifying commonality among concepts and defining superclass

and subclass relationships.

➢ It is a way to construct taxonomic classifications among concepts which are then illustrated in class

hierarchies.

Figure: Generalization – Specialization Hierarchy

➢ For example, the concepts CashPayment, CreditPayment and CheckPayment are all very similar and

it is possible to organize them into a generalization - specification class hierarchy in which the

superclass Payment represents a more general concept, and the subclasses more specialized ones.

➢ Identifying a superclass and subclasses is of value in a domain model because their presence allows

us to understand concepts, refined and abstract terms.

➢ A conceptual superclass definition is more general or encompassing than a subclass definition. ➢

Superclass: Payment

➢ Subclass: Cash Payment, Credit Payment, Check payment

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 24

Figure: Payment class hierarchy

Figure: Venn diagram of set relationships

8 Finding conceptual class Hierarchies
When a class hierarchy is created, statements about super classes that apply to subclasses are made.

Figure: Subclass conformance

Guideline: 100% Rule

100% of the conceptual superclass’s definition should be applicable to the sub-class. The subclass must

conform to 100% of the superclass’s. ▪ Attributes

▪ associations

Guideline: Is a Rule

All the members of a subclass set must be members of their superclass set.

Payment

CashPayment CreditPayment CheckPayment

Cash
Payment

Credit
Payment

Check
Payment

Payment

amount :
 Money

Sale Pays - for
1

1

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 25

In natural language, this can usually be informally tested by forming the statement: Subclass is a

Superclass

WHEN TO DEFINE A CONCEPTUAL SUBCLASS?

A Conceptual Class Partition is a division of a conceptual class into disjoint subclasses.

8.1.1 Motivations to partition a conceptual class into subclasses Create

a conceptual subclass of a superclass when:

1. The subclass has additional attributes of interest.

2. The subclass has additional associations of interest.

3. The subclass concept is operated on, handled, reacted to, or manipulated differently than the

superclass or other subclasses, in ways that are of interest.

4. The subclass concept represents an animate thing that behaves differently than the superclass or

other subclasses, in ways that are of interest.

WHEN TO DEFINE A CONCEPTUAL SUPERCLASS CLASS?

8.1.2 Motivations to generalize and define a superclass:

1. The potential conceptual subclasses represent variations of a similar concept.

2. The subclasses will conform to the 100% and Is-a rule.

3. All subclasses have the same attribute that can be factored out and expressed in the super class.

4. All subclasses have the same association that can be factored out and expressed in the super class.

9 Aggregation and Composition
Aggregation

➢ Aggregation is a vague kind of association in the UML that loosely suggests whole/part

relationship. Aggregation type could be either: ▪ shared aggregation (aggregation) or

▪ composite aggregation (composition).

➢ Aggregation is a specialize form of Association where all object have their own life cycle but

there is an ownership like parent and child. Child object cannot belong to another parent object

at the same time.

➢ It is similar to "has-a" relationship.

➢ Aggregation (shared aggregation) is a "weak" form of aggregation when part instance is

independent of the composite:

➢ The same (shared) part could be included in several composites, and if composite is deleted,

shared parts may still exist.

➢ Shared aggregation is shown in the UML with a hollow or filled diamond symbol at the

aggregate end of the association line.

http://www.uml-diagrams.org/association.html#binary-association
http://www.uml-diagrams.org/association.html#binary-association
http://www.uml-diagrams.org/association.html#binary-association
http://www.uml-diagrams.org/association.html#shared-aggregation
http://www.uml-diagrams.org/association.html#shared-aggregation
http://www.uml-diagrams.org/association.html#composition
http://www.uml-diagrams.org/association.html#composition
http://www.uml-diagrams.org/association.html#aggregation
http://www.uml-diagrams.org/association.html#aggregation

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 26

Composition

➢ Composition is again specialize form of Aggregation. It is a strong type of aggregation.

Composition (composite aggregation) is a "strong" form of aggregation. Composition

requirements/features listed in UML specification are

• it is a whole/part relationship,

• it is binary association,

• part could be included in at most one composite (whole) at a time, and

• if a composite (whole) is deleted, all of its composite parts are "normally" deleted with

it. ➢ It shows string ownership to represent the component of complex object.

➢ Note, that UML does not define how, when and specific order in which parts of the composite

are created. Also, in some cases a part can be removed from a composite before the composite is

deleted, and so is not necessarily deleted as part of the composite.

➢ Composite aggregation is depicted as a binary association decorated with a filled black

diamond at the aggregate (whole) end.

➢ Folder could contain many files, while each File has exactly one Folder parent. If Folder is

deleted, all contained Files are deleted as well.

➢ When composition is used in domain models, both whole/part relationship as well as event of

composite "deletion" should be interpreted figuratively, not necessarily as physical containment

and/or termination. UML specification needs to be updated to explicitly allow this interpretat ion

http://www.uml-diagrams.org/association.html#aggregation
http://www.uml-diagrams.org/association.html#aggregation
http://www.uml-diagrams.org/association.html#aggregation
http://www.uml-diagrams.org/association.html#binary-association
http://www.uml-diagrams.org/association.html#binary-association
http://www.uml-diagrams.org/association.html#binary-association

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 27

➢ Hospital has 1 or more Departments, and each Department belongs to exactly one Hospital. If

Hospital is closed, so are all of its Departments.

➢ Note, that though it seems odd, multiplicity of the composite (whole) could be specified as 0..1

("at most one") which means that part is allowed to be a "stand alone", not owned by any specific

composite.

➢ Each Department has some Staff, and each Staff could be a member of one Department (or none).

If Department is closed, its Staff is relieved (but excluding the "stand alone" Staff).

Figure: Composition

Benefits of showing Composition

➢ It clarifies the domain constraints regarding the eligible existence of the part independent of the

whole. In composite aggregation, the part may not exist outside of the lifetime of the whole.

➢ During design work, this has an impact on the create-delete dependencies between the whole and

part software classes and database elements (in terms of referential integrity and cascading delete

paths).

➢ It consists in the identification of a creator (the composite) using the GRASP Creator Pattern.

➢ Operations – such as copy and delete – applied to the whole often propagate to the parts.

Problems in composition:

➢ The definition for composition is quite strict, and involves the following rules:

• whole-part relationship (it is an aggregation).

• strong (not shared) ownership of part.

• coincident lifetimes of whole and part.

• addition/removal of parts allowed for non-fixed multiplicity.

➢ The first rule is from the definition of an aggregation. A composition association is an

aggregation, and so a composition must still represent a whole-part relationship.

➢ The second rule concerns the ownership of the parts by the whole.

SalesLineItem Sale
1 .. * 1

Product
Description

Product
Catalog 1 .. * 1

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 28

Fig: Association, aggregation and composition

Composition in NextGen POS Domain Model

➢ In the POS domain, the SalesLineItem may be considered as a part of a composite sale.

➢ Transaction line items are viewed as parts of an aggregate transaction.

➢ There is a create delete dependency of the line items on the sale their life time is bound within

the lifetime of the sale.

➢ Similarly, ProductCatalog is a composite of ProductDescriptions.

➢ No other relationship is a compelling combination that suggests whole-part semantics, a

create-delete dependency, and ―If in doubt, leave it out‖

Figure: Aggregation in POS application

10 Relationship between Sequence Diagrams and Use

Cases
➢ Sequence diagram is used to represent one scenario of the use case. Hence it can be derived by

observing the use cases.

➢ A use case diagram just reflects the interaction of user with the system components, whereas the

sequence diagram has a set of messages that are exchanged between the objects in the system.

➢ Sequence diagrams cannot completely describe the system behavior, but they can specify typical use

cases for the system, small details in its behavior, and simplified overviews of its behavior.

➢ The use case diagrams are transformed into object sequence diagrams that define the interactions in

terms of public method.

➢ An SSD –System Sequence Diagram shows system events for a scenario of a use case,

therefore it is generated from inspection of a use case.

Sale SalesLineItem

Product Catalog Product Description

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 29

Figure: Relationship between SSD and Use Case

➢ To identify system events, it is necessary to be clear on the choice of system boundary. For the

purposes of software development, the system boundary is usually chosen to be the software system

itself; in this context, a system event is an external event that directly stimulates the software.

➢ System events (and their associated system operations) should be expressed at the level of intent

rather than in terms of the physical input medium or interface widget level. It also improves clarity

to start the name of a system event with a verb Thus "enter item" is better than "scan" (that is, laser

scan).

11 When to Use Class Diagrams
➢ Class diagram is a static diagram and it is used to model the static view of a system. The static view

describes the vocabulary of the system.

➢ Class diagram clearly shows the mapping with object oriented language such as Java, C++ etc.

Practically class diagram is generally used for construction purpose.

➢ Class diagram is also considered as the foundation for component and deployment diagrams.

➢ In a nutshell it can be said, class diagrams are used for:

▪ Describing the static view of the system

▪ Showing the collaboration among the elements of the static view.

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 30

▪ Describing the functionalities performed by the system.

▪ Construction of software applications using object oriented languages.

Part -A

1) Define UML class diagram.

UML class diagrams illustrate classes, interfaces and their associations. They are used for static object

modeling.

2) Write the common uses of class diagram.

Class diagrams are used for:

✓ Describing the static view of the system.

✓ Showing the collaboration among the elements of the static view.

✓ Describing the functionalities performed by the system.

✓ Construction of software applications using object oriented languages.

3) List the relationships used in class diagram.[May 2011][Nov 2013][May 2014][Nov 2014] [Nov

2015]

✓ Association

✓ Dependency

✓ Aggregation

✓ Composition

✓ Generalization

4) Define classifier. A UML classifier is ―a model element that describes behavioral and structure

feature‖. Classifiers can also be specialized. They are a generalization of many of the elements of the

UML, including classes, interfaces, use cases and actors.

5) Define attribute.

Attributes are also called as structural properties in the UML. Attributes of a classifier are shown as:

✓ Attribute text notation

✓ Association line notation

✓ Both together

6) What is the syntax for an attribute in UML? The full syntax of the attribute text notation is:

visibility name: type multiplicity = default { property-string }

7) What is generalization?

Generalization is the activity of identifying commonality among concepts and defining superclass and

subclass relationships. For example, the concepts CashPayment, CreditPayment and CheckPayment are

all very similar and it is possible to organize them into a generalization, specification, class hierarchy.

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 31

8) Define aggregation. [May 2014] [Nov 2013][May 2013][Nov 2014] [May 2019]

Aggregation is a vague kind of association in the UML that loosely suggests Whole -part relationships. It has

no meaningful distinct semantics in the UML versus a plain association, but the term is defined in the UML.

9) Define composition. [May 2014] [Nov 2013][May 2013][Nov 2014][Nov 2017]

Composition, also known as composite aggregation, is a strong kind of whole –part aggregation and is

useful to show in some models. It is an instance of a part belongs to only one composite instance. For

Example: Steering and car are the two classes those can be associated by composite relationship.

10) What is UML constraint?

A UML constraint is a restriction or condition on a UML element. It is visualized in text between braces.

Example: {size>=0}

11) Define qualified association.

A qualified association has a qualifier that is used to select an object (or objects) from a larger set of

related objects, based upon the qualifier key.

12) Define association class.

An association class allows us to treat an association itself as a class, and model it with attributes,

operations, and other features.

13) What is Navigability?

Navigability is a property of the role that indicates that it is possible to navigate uni-directionally across the

association from objects of the source to target class. Navigability implies visibility, usually attribute

visibility

14) What is a dependency relationship?

✓ The UML dependency relationship indicates that one element (of any kind, including classes, use cases,

and so on) has knowledge of another element.

✓ It is illustrated with a dashed arrow line.
✓ In class diagrams the dependency relationship is useful to depict non-attribute visibility between classes;

in other words, parameter, global, or locally declared visibility.

15) What is class?

A class is an encapsulation of attributes and methods. It is a collection of objects. It encapsulates both

data and behaviour.

16) Provide the two perspectives to Design class diagram.

1. Conceptual Perspective – class diagram is used to visualize a domain model 2.

Software Perspective – class diagram is used to visualize a Design Model 17)

Define Refinement. [May 2019]

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 32

Refinement is the counterpart of abstraction. Abstracting adesign means leaving outirrelevant details of

that design. In that case a higher level design is obtained. By refininga design, on the other hand, a lower

level design is obtained,that has more detail than theoriginal design.

18) Difference between Aggregation and composition.

Aggregation Composition

„Has a’ relationship „Part of’ relationship

In aggregation there exhibit a relationship where

a child can exist independently of the parent.

In composition they cannot exist independently

of the parent.

Hollow Diamond Solid Diamond

19) When to use class diagram?

Class diagrams are used for:

▪ Describing the static view of the system

▪ Showing the collaboration among the elements of the static view.

▪ Describing the functionalities performed by the system.

▪ Construction of software applications using object oriented languages.

20) Define Elaboration. (or)What do you understand from the term Elaboration? [May-2012, 2013,

2014] [Nov 2014]

Elaboration is the initial series of iterations during which the team does serious investigation,

implements (programs and tests) the core architecture, clarifies most requirements, and tackles the high

- risk issues. It Build the core architecture, resolve the high-risk elements, define most requirements, and

estimate the overall schedule and resources.

21) What are the tasks performed in elaboration? [Nov-2015][May 2018]

▪ the core, risky software architecture is programmed and tested

▪ the majority of requirements are discovered and stabilized

▪ the major risks are mitigated or retired

22) Define Domain Model.

In the UP, ―Domain Model‖ means a representation of real-situation conceptual classes, not of software

objects. The term does not mean a set of diagrams describing software classes, the domain layer of a

software architecture or software objects with responsibilities.

23) why call a domain model a “visual dictionary”? [Nov 2016] ✓ It visualizes and relates words or

concepts in the domain.

✓ It also shows an abstraction of the conceptual classes

✓ The information it illustrates (using UML notation) could alternatively have been expressed in

plain text (in the UP glossary).

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 33

✓ The domain model is a visual dictionary of the noteworthy abstractions, domain vocabulary, and

information content of the domain.

24) What is conceptual class?

A conceptual class is an idea, thing, or object.

A conceptual class may be considered in terms of its symbol, intension, and extension.

• Symbol – words or images representing a conceptual class.

• Intension – the definition of a conceptual class.

• Extension – the set of examples to which the conceptual class applies.

25) When to create a subclass of a superclass? [Nov 2017] Create a conceptual subclass of a superclass

when:

1. The subclass has additional attributes of interest.

2. The subclass has additional associations of interest.

3. The subclass concept is operated on, handled, reacted to, or manipulated differently than the

superclass or other subclasses, in ways that are of interest.

4. The subclass concept represents an animate thing that behaves differently than the superclass or

other subclasses, in ways that are of interest.

26) What is the relationship of a conceptual super class to a subclass?[May 2017]

Definition: A conceptual superclass definition is more general or encompassing than a subclass

definition.

For example, consider the superclass Paymentand its subclasses (CashPayment, and so on). Assume the

definition of Payment is that it represents the transaction of transferring money (not necessarily cash)

for a purchase from one party to another, and that all payments have an amount of money transferred.

The model corresponding to this is shown in Figure.

27) Specify the three strategies to find conceptual classes.

Three strategies to find conceptual classes:

1. Reuse or modify existing models.

2. Use a category list

3. Identify noun phrases.

28) How to create a domain model? [Nov-2015][Nov 2016] Bounded by the current iteration

requirements under design:

1. Find the conceptual classes

2. Draw them as classes in a UML class diagram.

3. Add associations and attributes.

29) Define Association.

An association is a relationship between classes (more precisely, instances of these classes) that indicates

some meaningful and interesting connections.

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 34

Associations are defined as semantic relationship between two or more classifiers that involve

connections among their instances.

30) What is the purpose of association relationship? [May 2015]

Association is a relationship between classifiers which is used to show that instances of classifiers could

be either linked to each other or combined logically or physically into some aggregation.

31) What is an association rule?

Association names should start with a capital letter, since an association represents a classifier of links

between instances; in the UML, classifiers should start with a capital letter.

32) Define Multiplicity.[Nov 2017]

Multiplicity defines how many instances of class A can be associated with one instance of a class B.

Figure: Multiplicity of an Association

33) What is the relationship between sequence diagram and use case?

An SSD –System Sequence Diagram shows system events for a scenario of a use case, therefore

it is generated from inspection of a use case.

34) Define System Events and the System Boundary. [Nov 2016]

To identify system events, it is necessary to be clear on the choice of system boundary. For the purposes

of software development, the system boundary is usually chosen to be the software system itself; in this

context, a system event is an external event that directly stimulates the software.

35) How to Name System Events and Operations? [Nov 2016]

System events (and their associated system operations) should be expressed at the level of intent rather

than in terms of the physical input medium or interface widget level. It also improves clarity to start the

name of a system event with a verb Thus "enter item" is better than "scan" (that is, laser scan).

PART - B

Item Store
Stocks

*

multiplicity of the role

1

 CS8592 – Object Oriented Analysis and Design Unit -II

III Year –CSE 35

1. Describe UML notation for class diagram with an example. Explain the concept of link,
association and inheritance. [Nov-2014]

(or)

 Describe the UML notation for class diagram with an example. [May 2013]
(or)

With a suitable example, explain how to design a class. Give all possible representation in a class
(such as: name, attribute, visibility, methods, and responsibilities). [Nov 2012]

2. Write about elaboration and discuss the differences between differences between Elaboration

and Inception with suitable diagram for university domain. [May 2017][Nov 2015][Nov 2013]

3. Construct design for Library Information System which comprises and following notations. i.
Aggregations

ii. Compositions

iii. Associations [Nov 2015]
4. Discuss in detail about the three strategies to find conceptual classes. [Nov 2016-8M]

5. Explain association, aggregation and composition relationships in detail. [Nov 2016- 8M] [May
2017 -6M]

6. Explain the guidelines for finding conceptual classes with neat diagram. [May 2017 -10M

7. Illustrate with example the relationship between sequence diagram and use cases. [May 2014 ,
Nov 2014]

(or)
8. What is the relation between sequence diagrams and use cases. Take an example to show the

relationship, highlighting the advantages. [May 2019][May 2015][Nov 2016]

9. Explain with an example aggregation and composition. [May 2019-8M] [Nov 2017 -6M]

10. What is multiplicity of an association? Explain with an example the different types of
multiplicities. [Nov 2017 -7M]

11. Explain with an example generalization and specialization and write a note on abstract class and
abstract operation. [Nov 2017 -8M]

12. List and describe the three strategies to identify conceptual classes. [Nov 2017 -16M]

13. Write a short note on domain models. [May 2019-6M]

14. Explain in detail about conceptual classes and description classes. [May 2019-
8M]

