
 

Unit 1: Algorithmic problem solving                                                                                                                                            1 

GE8151 PROBLEM SOLVING AND PYTHON PROGRAMMING 
  UNIT I 

ALGORITHMIC PROBLEM SOLVING 

 
1.PROBLEM SOLVING 

Problem solving is the systematic approach to define the problem and creating 
number of solutions. 
The problem solving process starts with the problem specifications and ends with a 
Correct program.  
 
1.1 PROBLEM SOLVING TECHNIQUES 
Problem solving technique is a set of techniques that helps in providing logic for solving 
a problem.  
Problem Solving Techniques: 
 Problem solving can be expressed in the form of 

1. Algorithms.  
2. Flowcharts.  
3. Pseudo codes.  
4. programs 

1.2.ALGORITHM 
It is defined as a sequence of instructions that describe a method for solving a 

problem. In other words it is a step by step procedure for solving a problem. 
Properties of Algorithms 
 Should be written in simple English 
 Each and every instruction should be precise and unambiguous. 
 Instructions in an algorithm should not be repeated infinitely. 
 Algorithm should conclude after a finite number of steps. 
 Should have an end point 
 Derived results should be obtained only after the algorithm terminates. 

Qualities of a good algorithm  
The following are the primary factors that are often used to judge the quality of the 
algorithms. 
Time – To execute a program, the computer system takes some amount of time. The 
lesser is the time required, the better is the algorithm.  
Memory – To execute a program, computer system takes some amount of memory 
space. The lesser is the memory required, the better is the algorithm.  
Accuracy – Multiple algorithms may provide suitable or correct solutions to a given 
problem, some of these may provide more accurate results than others, and such 
algorithms may be suitable.  
 

Algorithms, building blocks of algorithms (statements, state, control flow, functions), 

notation (pseudo code, flow chart, programming language), algorithmic problem 

solving, simple strategies for developing algorithms (iteration, recursion). Illustrative 

problems: find minimum in a list, insert a card in a list of sorted cards, Guess an 

integer number in a range, Towers of Hanoi. 



 

Unit 1: Algorithmic problem solving                                                                                                                                            2 

Example: 
Example 
Write an algorithm to print „Good Morning” 
Step 1: Start 
Step 2: Print  “Good Morning” 
Step 3: Stop 
 
2.BUILDING BLOCKS OF ALGORITHMS (statements, state, control flow, functions) 

Algorithms can be constructed from basic building blocks namely, sequence, 
selection and iteration.  
2.1.Statements: 
Statement is a single action in a computer. 
 
In a computer statements might include some of the following actions 
 input data-information given to the program 
 process data-perform operation on a given input 
 output data-processed result 

 
2.2.State: 
Transition from one process to another process under specified condition with in a 
time is called state. 
 
2.3.Control flow: 
The process of executing the individual statements in a given order is called control 
flow. 
The control can be executed in three ways  

1. sequence 
2. selection 
3. iteration 

 
Sequence:  
All the instructions are executed one after another is called sequence execution. 
 
Example: 
Add two numbers: 
Step 1: Start 
Step 2: get a,b 
Step 3: calculate c=a+b 
Step 4: Display c  
Step 5: Stop 
 
Selection:  

A selection statement causes the program control to be transferred to a specific 
part of the program based upon the condition.  

If the conditional test is true, one part of the program will be executed, otherwise 
it will execute the other part of the program. 



 

Unit 1: Algorithmic problem solving                                                                                                                                            3 

 
Example 
Write an algorithm to check whether he is eligible to vote?  
Step 1: Start 
Step 2: Get age  
Step 3: if age >= 18 print “Eligible to vote” 
Step 4: else print “Not eligible to vote” 
Step 6: Stop 
 
Iteration:  

In some programs, certain set of statements are executed again and again based 
upon conditional test. i.e. executed more than one time. This type of execution is called 
looping or iteration. 
 
Example 
 
Write an algorithm to print all natural numbers up to n 
 
Step 1: Start 
Step 2: get n value. 
Step 3: initialize i=1 
Step 4: if (i<=n) go to step 5 else go to step 7 
Step 5: Print i value and increment i value by 1  
Step 6: go to step 4 
Step 7: Stop 
 
2.4.Functions: 
 Function is a sub program which consists of block of code(set of instructions) 

that performs a particular task.  
 For complex problems, the problem is been divided into smaller and simpler 

tasks during algorithm design. 
 

 



 

Unit 1: Algorithmic problem solving                                                                                                                                            4 

Benefits of Using Functions 

 Reduction in line of code  

 code reuse 

 Better readability 

 Information hiding 

 Easy to debug and test 

 Improved maintainability 

Example: 
Algorithm for addition of two numbers using function 
Main function() 
Step 1: Start         
Step 2: Call the function add() 
Step 3: Stop 
 
sub function add() 
Step 1: Function start 
Step 2: Get a, b Values 
Step 3: add  c=a+b 
Step 4: Print c 
Step 5: Return  

 
3.NOTATIONS 
3.1.FLOW CHART 
 
Flow chart is defined as graphical representation of the logic for problem solving. 
The purpose of flowchart is making the logic of the program clear in a visual 
representation. 



 

Unit 1: Algorithmic problem solving                                                                                                                                            5 

 
Rules for drawing a flowchart 

1. The flowchart should be clear, neat and easy to follow.  
2. The flowchart must have a logical start and finish.  
3. Only one flow line should come out from a process symbol.  

 
 
 

4. Only one flow line should enter a decision symbol. However, two or three flow 
lines may leave the decision symbol.  

 
  

5. Only one flow line is used with a terminal symbol.  
 
 
 

6. Within standard symbols, write briefly and precisely.  
7. Intersection of flow lines should be avoided.  

 
Advantages of flowchart: 

1. Communication: - Flowcharts are better way of communicating the logic of a 
system to all concerned. 

2. Effective analysis: - With the help of flowchart, problem can be analyzed in more 
effective way. 



 

Unit 1: Algorithmic problem solving                                                                                                                                            6 

3. Proper documentation: - Program flowcharts serve as a good program 
documentation, which is needed for various purposes. 

4. Efficient Coding: - The flowcharts act as a guide or blueprint during the systems 
analysis and program development phase. 

5. Proper Debugging: - The flowchart helps in debugging process. 
6. Efficient Program Maintenance: - The maintenance of operating program 

becomes easy with the help of flowchart. It helps the programmer to put efforts 
more efficiently on that part. 

Disadvantages of flow chart: 
1. Complex logic: - Sometimes, the program logic is quite complicated. In that case, 

flowchart becomes complex and clumsy. 
2. Alterations and Modifications: - If alterations are required the flowchart may 

require re-drawing completely. 
3. Reproduction: - As the flowchart symbols cannot be typed, reproduction of 

flowchart becomes a problem. 
4. Cost: For large application the time and cost of flowchart drawing becomes 

costly. 
3.2.PSEUDO CODE: 
 Pseudo code consists of short, readable and formally styled English languages 

used for explain an algorithm. 
 It does not include details like variable declaration, subroutines. 
 It is easier to understand for the programmer or non programmer to understand 

the general working of the program, because it is not based on any programming 
language. 

 It gives us the sketch of the program before actual coding. 
 It is not a machine readable  
 Pseudo code can’t be compiled and executed. 
 There is no standard syntax for pseudo code. 

Guidelines for writing pseudo code: 
 Write one statement per line 
 Capitalize initial keyword 
 Indent to hierarchy 
 End multiline structure 
 Keep statements language independent 

Common keywords used in pseudocode 
   The following gives common keywords used in pseudocodes. 

1. //: This keyword used to represent a comment. 
2. BEGIN,END: Begin is the first statement and end is the last statement. 
3. INPUT, GET, READ: The keyword is used to inputting data. 
4. COMPUTE, CALCULATE: used for calculation of the result of the given expression. 
5. ADD, SUBTRACT, INITIALIZE used for addition, subtraction and initialization. 
6. OUTPUT, PRINT, DISPLAY: It is used to display the output of the program. 
7. IF, ELSE, ENDIF: used to make decision. 
8. WHILE, ENDWHILE: used for iterative statements. 
9. FOR, ENDFOR: Another iterative incremented/decremented tested automatically. 

 



 

Unit 1: Algorithmic problem solving                                                                                                                                            7 

Syntax for if else: Example: Greates of two numbers 
IF (condition)THEN 
    statement  
    ...  
ELSE 
    statement  
    ...  
ENDIF 
 

BEGIN 
READ a,b 
IF (a>b) THEN 
DISPLAY a is greater 
ELSE 
DISPLAY b is greater 
END IF 
END 

Syntax for For: Example: Print n natural numbers 
FOR( start-value to end-value) DO  
    statement  
 ...  
ENDFOR 

BEGIN 
GET n 
INITIALIZE i=1 
FOR (i<=n) DO 
      PRINT i 
      i=i+1 
ENDFOR 
END 

Syntax for While: Example: Print n natural numbers 
WHILE (condition) DO  
    statement  
    ...  
ENDWHILE 

BEGIN 
GET n 
INITIALIZE i=1 
WHILE(i<=n) DO 
      PRINT i 
      i=i+1 
ENDWHILE 
END 

Advantages: 
 Pseudo is independent of any language; it can be used by most programmers. 
 It is easy to translate pseudo code into a programming language. 
 It can be easily modified as compared to flowchart. 
 Converting a pseudo code to programming language is very easy as compared 

with converting a flowchart to programming language. 
Disadvantages: 

 It does not provide visual representation of the program’s logic.  
 There are no accepted standards for writing pseudo codes. 
 It cannot be compiled nor executed.  
 For a beginner, It is more difficult to follow the logic or write pseudo code as 

compared to flowchart. 
Example: 
Addition of two numbers: 
BEGIN 
GET a,b 
ADD c=a+b 
PRINT c 
END 



 

Unit 1: Algorithmic problem solving                                                                                                                                            8 

Algorithm Flowchart Pseudo code 

An algorithm is a sequence 

of instructions used to 

solve a problem 

It is a graphical 

representation of algorithm 

It is a language 

representation of 

algorithm. 

User needs knowledge to 

write algorithm. 

not need knowledge of 

program to draw or 

understand flowchart 

Not need knowledge of 

program language to 

understand or write a 

pseudo code. 

 
3.3.PROGRAMMING LANGUAGE 
 A programming language is a set of symbols and rules for instructing a computer 

to perform specific tasks. The programmers have to follow all the specified rules before 

writing program using programming language. The user has to communicate with the 

computer using language which it can understand. 

Types of programming language 

1. Machine language 

2. Assembly language 

3. High level language 

Machine language: 

 The computer can understand only machine language which uses 0’s and 1’s. In 

machine language the different instructions are formed by taking different 

combinations of 0’s and 1’s. 

Advantages: 

Translation free: 

 Machine language is the only language which the computer understands. For 

executing any program written in any programming language, the conversion to 

machine language is necessary. The program written in machine language can be 

executed directly on computer. In this case any conversion process is not required. 

High speed 

 The machine language program is translation free. Since the conversion time is 

saved, the execution of machine language program is extremely fast. 

Disadvantage: 

 It is hard to find errors in a program written in the machine language. 

 Writhing program in machine language is a time consuming process. 

Machine dependent: According to architecture used, the computer differs from each 

other. So machine language differs from computer to computer. So a program 

developed for a particular type of computer may not run on other type of computer. 

Assembly language: 

 To overcome the issues in programming language and make the programming 

process easier, an assembly language is developed which is logically equivalent to 

machine language but it is easier for people to read, write and understand. 



 

Unit 1: Algorithmic problem solving                                                                                                                                            9 

 Assembly language is symbolic representation of machine language. Assembly 

languages are symbolic programming language that uses symbolic notation to 

represent machine language instructions. They are called low level language 

because they are so closely related to the machines. 

 Ex:  ADD  a, b 

Assembler: 

 Assembler is the program which translates assembly language instruction in to a 

machine language. 

Advantage: 

 Easy to understand and use. 

 It is easy to locate and correct errors. 

Disadvantage 

Machine dependent 

 The assembly language program which can be executed on the machine depends 

on the architecture of that computer. 

Hard to learn 

 It is machine dependent, so the programmer should have the hardware 

knowledge to create applications using assembly language. 

Less efficient 

 Execution time of assembly language program is more than machine language 

program.  

 Because assembler is needed to convert from assembly language to machine 

language. 

High level language 

High level language contains English words and symbols. The specified rules are 

to be followed while writing program in high level language. The interpreter or 

compilers are used for converting these programs in to machine readable form. 

Translating high level language to machine language 

The programs that translate high level language in to machine language are called 

interpreter or compiler. 

 

Compiler: 

 A compiler is a program which translates the source code written in a high level 

language in to object code which is in machine language program. Compiler reads the 

whole program written in high level language and translates it to machine language. If 

any error is found it display error message on the screen. 

 

Interpreter 

 Interpreter translates the high level language program in line by line manner. The 

interpreter translates a high level language statement in a source program to a machine 



 

Unit 1: Algorithmic problem solving                                                                                                                                            10 

code and executes it immediately before translating the next statement. When an error 

is found the execution of the program is halted and error message is displayed on the 

screen. 

Advantages 

Readability 

 High level language is closer to natural language so they are easier to learn and 

understand 

Machine independent 

 High level language program have the advantage of being portable between 

machines. 

Easy debugging 

 Easy to find and correct error in high level language 

Disadvantages 

Less efficient 

The translation process increases the execution time of the program. Programs in 

high level language require more memory and take more execution time to execute. 

They are divided into following categories: 
1. Interpreted programming languages 
2. Functional programming languages 
3. Compiled programming languages 
4. Procedural programming languages 
5. Scripting programming language 
6. Markup programming language 
7. Concurrent programming language 
8. Object oriented programming language 

 
Interpreted programming languages: 

An interpreted language is a programming language for which most of its 
implementation executes instructions directly, without previously compiling a program 
into machine language instructions. The interpreter executes the program directly 
translating each statement into a sequence of one or more subroutines already 
compiled into machine code. 
Examples: 
Pascal 
Python 
 
Functional programming language: 

Functional programming language defines every computation as a mathematical 
evaluation. They focus on the programming languages are bound to mathematical 
calculations 
Examples: 
Clean 
Haskell 



 

Unit 1: Algorithmic problem solving                                                                                                                                            11 

Compiled Programming language: 
A compiled programming is a programming language whose implementation are 

typically compilers and not interpreters. 
It will produce a machine code from source code. 
Examples: 
C 
C++ 
C# 
JAVA 
 
Procedural programming language: 

Procedural (imperative) programming implies specifying the steps that the 
programs should take to reach to an intended state. 
A procedure is a group of statements that can be referred through a procedure call. 
Procedures help in the reuse of code. Procedural programming makes the programs 
structured and easily traceable for program flow. 
Examples: 
Hyper talk 
MATLAB 
 
Scripting language: 

Scripting language are programming languages that control an application. 
Scripts can execute independent of any other application. They are mostly embedded in 
the application that they control and are used to automate frequently executed tasks 
like communicating with external program. 
 
Examples: 
Apple script 
VB script 
 
Markup languages: 

A markup language is an artificial language that uses annotations to text that 
define hoe the text is to be displayed. 
Examples: 
HTML 
XML 
Concurrent programming language: 

Concurrent programming is a computer programming technique that provides 
for the execution of operation concurrently, either with in a single computer or across a 
number of systems. 
Examples: 
Joule 
Limbo 
Object oriented programming language: 

Object oriented programming is a programming paradigm based on the concept 
of objects which may contain data in the form of procedures often known as methods.  



 

Unit 1: Algorithmic problem solving                                                                                                                                            12 

Examples: 
Lava 
Moto 
 
4.ALGORITHMIC PROBLEM SOLVING: 
 
Algorithmic problem solving is solving problem that require the formulation of an 
algorithm for the solution. 

 
Understanding the Problem 
 It is the process of finding the input of the problem that the algorithm solves.  
 It is very important to specify exactly the set of inputs the algorithm needs to 

handle.  
 A correct algorithm is not one that works most of the time, but one that works 

correctly for all legitimate inputs. 
Ascertaining the Capabilities of the Computational Device 
 
 If the instructions are executed one after another, it is called sequential 

algorithm.  



 

Unit 1: Algorithmic problem solving                                                                                                                                            13 

 If the instructions are executed concurrently, it is called parallel algorithm.   
 
Choosing between Exact and Approximate Problem Solving 
 The next principal decision is to choose between solving the problem exactly or 

solving it approximately.  
 Based on this, the algorithms are classified as exact algorithm and approximation 

algorithm. 
Deciding a data structure: 
 Data structure plays a vital role in designing and analysis the algorithms.  
 Some of the algorithm design techniques also depend on the structuring data 

specifying a problem’s instance  
 Algorithm+ Data structure=programs.  

 
Algorithm Design Techniques 
 An algorithm design technique (or “strategy” or “paradigm”) is a general 

approach to solving problems algorithmically that is applicable to a variety of 
problems from different areas of computing. 

 Learning these techniques is of utmost importance for the following reasons. 
 First, they provide guidance for designing algorithms for new problems,  
 Second, algorithms are the cornerstone of computer science  

 
Methods of Specifying an Algorithm 
 Pseudocode is a mixture of a natural language and programming language-like 

constructs. Pseudocode is usually more precise than natural language, and its 
usage often yields more succinct algorithm descriptions.  

  
 In the earlier days of computing, the dominant vehicle for specifying algorithms 

was a flowchart, a method of expressing an algorithm by a collection of 
connected geometric shapes containing descriptions of the algorithm’s steps.  

 
 Programming language can be fed into an electronic computer directly. Instead, 

it needs to be converted into a computer program written in a particular 
computer language. We can look at such a program as yet another way of 
specifying the algorithm, although it is preferable to consider it as the algorithm’s 
implementation. 

Proving an Algorithm’s Correctness 
 Once an algorithm has been specified, you have to prove its correctness. That is, 

you have to prove that the algorithm yields a required result for every legitimate 
input in a finite amount of time.  

 A common technique for proving correctness is to use mathematical induction 
because an algorithm’s iterations provide a natural sequence of steps needed for 
such proofs.  

 It might be worth mentioning that although tracing the algorithm’s performance 
for a few specific inputs can be a very worthwhile activity, it cannot prove the 
algorithm’s correctness conclusively. But in order to show that an algorithm is 
incorrect, you need just one instance of its input for which the algorithm fails. 



 

Unit 1: Algorithmic problem solving                                                                                                                                            14 

 
Analysing an Algorithm 

1. Efficiency.  
Time efficiency, indicating how fast the algorithm runs,  
Space efficiency, indicating how much extra memory it uses.  
  

2. simplicity.  
 An algorithm should be precisely defined and investigated with mathematical 

expressions.  
  Simpler algorithms are easier to understand and easier to program.  
 Simple algorithms usually contain fewer bugs.  

 
Coding an Algorithm 
 Most algorithms are destined to be ultimately implemented as computer 

programs. Programming an algorithm presents both a peril and an opportunity.  
 A working program provides an additional opportunity in allowing an empirical 

analysis of the underlying algorithm. Such an analysis is based on timing the 
program on several inputs and then analysing the results obtained.  

  
5.SIMPLE STRATEGIES FOR DEVELOPING ALGORITHMS: 

1. iterations 
2. Recursions 

5.1.Iterations: 
A sequence of statements is executed until a specified condition is true is called 
iterations. 

1. for loop 

2. While loop 
Syntax for For: Example: Print n natural numbers 
 
FOR( start-value to end-value) DO  
    statement  
 ...  
ENDFOR 

BEGIN 
GET n 
INITIALIZE i=1 
FOR (i<=n) DO 
      PRINT i 
      i=i+1 
ENDFOR 
END 

Syntax for While: Example: Print n natural numbers 
 
WHILE (condition) DO  
    statement  
    ...  
ENDWHILE 

BEGIN 
GET n 
INITIALIZE i=1 
WHILE(i<=n) DO 
      PRINT i 
      i=i+1 
ENDWHILE 
END 

 



 

Unit 1: Algorithmic problem solving                                                                                                                                            15 

 

 
 
5.2.Recursions: 
 A function that calls itself is known as recursion. 
 Recursion is a process by which a function calls itself repeatedly until some 

specified condition has been satisfied. 
 
Algorithm for factorial of n numbers using recursion: 
 
Main function: 
Step1: Start 
Step2: Get n 
Step3: call factorial(n) 
Step4: print fact 
Step5: Stop 
 
Sub function factorial(n): 
Step1: if(n==1) then fact=1 return fact 
Step2: else fact=n*factorial(n-1) and return fact 
 



 

Unit 1: Algorithmic problem solving                                                                                                                                            16 

 
 
Pseudo code for factorial using recursion: 
  
Main function: 
  
BEGIN 
GET n 
CALL factorial(n) 
PRINT fact 
BIN 
  
Sub function factorial(n): 
 
IF(n==1) THEN  
        fact=1  
        RETURN fact 
ELSE 
       RETURN fact=n*factorial(n-1) 
 
 
 
 
 
 
 
 
 
 
 



 

Unit 1: Algorithmic problem solving                                                                                                                                            17 

More examples: 
Write an algorithm to find area of a rectangle 

 

Step 1: Start 

Step 2: get l,b values 

Step 3: Calculate A=l*b 

Step 4: Display A 

Step 5: Stop 

 

 

 

BEGIN 

READ l,b 

CALCULATE  A=l*b 

DISPLAY A 

END 

Write an algorithm for Calculating area and circumference of circle 

 

Step 1: Start 

Step 2: get r value 

Step 3: Calculate A=3.14*r*r 

Step 4: Calculate C=2.3.14*r 

Step 5: Display A,C 

Step 6: Stop 

 

 

 

BEGIN 

READ r 

CALCULATE  A and C 

A=3.14*r*r 

C=2*3.14*r 

DISPLAY A 

END 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Unit 1: Algorithmic problem solving                                                                                                                                            18 

Write an algorithm for Calculating simple interest 

Step 1: Start 

Step 2: get P, n, r value 

Step3:Calculate 

SI=(p*n*r)/100 

Step 4: Display  S 

Step 5:  Stop 

 

 

BEGIN 

READ P, n, r 

CALCULATE  S 

SI=(p*n*r)/100 

DISPLAY SI 

END 

Write an algorithm for Calculating engineering cutoff 

Step 1: Start 

Step2: get P,C,M value 

Step3:calculate  

Cutoff= (P/4+C/4+M/2) 

Step 4: Display  Cutoff 

Step 5:  Stop 

 

 

BEGIN 

READ P,C,M 

CALCULATE  

Cutoff= (P/4+C/4+M/2) 

DISPLAY  Cutoff 

END 

To check greatest of two numbers 

Step 1: Start 

Step 2: get a,b value 

Step 3: check if(a>b)  print a is greater 

Step 4: else b is greater 

Step 5:  Stop 



 

Unit 1: Algorithmic problem solving                                                                                                                                            19 

BEGIN 

READ a,b 

IF (a>b) THEN 

DISPLAY a is greater 

ELSE 

DISPLAY b is greater 

END IF 

END 

 
To check leap year or not 

Step 1: Start 

Step 2: get y 

Step 3: if(y%4==0)  print leap year 

Step 4: else print not leap year 

Step 5:  Stop 

BEGIN 

READ y 

IF (y%4==0) THEN 

DISPLAY leap year 

ELSE 

DISPLAY not leap year 

END IF 

END 



 

Unit 1: Algorithmic problem solving                                                                                                                                            20 

 
To check positive or negative number 

Step 1: Start 

Step 2: get  num 

Step 3: check if(num>0)  print a is positive 

Step 4: else num is negative 

Step 5:  Stop 

 

BEGIN 

READ num 

IF (num>0) THEN 

DISPLAY num is positive 

ELSE 

DISPLAY num is negative 

END IF 

END 

 

 
 

 



 

Unit 1: Algorithmic problem solving                                                                                                                                            21 

To check odd or even number 

Step 1: Start 

Step 2: get  num 

Step 3: check if(num%2==0)  print num is even 

Step 4: else num is odd 

Step 5:  Stop 

BEGIN 

READ num 

IF (num%2==0) THEN 

DISPLAY num is even 

ELSE 

DISPLAY num is odd 

END IF 

END 

 
To check greatest of three numbers 

Step1: Start 

Step2: Get A, B, C 

Step3: if(A>B) goto Step4 else goto step5 

Step4: If(A>C) print A else print C 

Step5: If(B>C) print B else print C 

Step6: Stop 



 

Unit 1: Algorithmic problem solving                                                                                                                                            22 

BEGIN 

READ a, b, c 

IF (a>b) THEN 

      IF(a>c) THEN 

           DISPLAY a is greater 

       ELSE 

            DISPLAY c is greater 

       END IF 

ELSE 

      IF(b>c) THEN 

            DISPLAY b is greater 

      ELSE  

            DISPLAY c is greater 

      END IF 

END IF 

END 

 
 

Write an algorithm to check whether given number is +ve, -ve or zero. 

Step 1: Start 

Step 2: Get n value. 

Step 3: if (n ==0) print “Given number is Zero” Else goto step4 

Step 4: if (n > 0) then Print “Given number is +ve”  

Step 5: else Print “Given number is -ve”  

Step 6: Stop 



 

Unit 1: Algorithmic problem solving                                                                                                                                            23 

BEGIN 

GET n  

IF(n==0) THEN  

     DISPLAY “ n is zero” 

ELSE 

     IF(n>0) THEN 

             DISPLAY “n is positive” 

     ELSE 

             DISPLAY “n is positive” 

      END IF 

END IF 

END  

 

 

 

 
 

 

 



 

Unit 1: Algorithmic problem solving                                                                                                                                            24 

Write an algorithm to print all natural numbers up to n 
 
Step 1: Start 
Step 2: get n value. 
Step 3: initialize i=1 
Step 4: if (i<=n) go to step 5 else go to step 8 
Step 5: Print i value 
step 6 : increment i value by 1  
Step 7: go to step 4 
Step 8: Stop  
 
 

BEGIN 

GET n 

INITIALIZE i=1 

WHILE(i<=n) DO 

      PRINT i 

      i=i+1 

ENDWHILE 

END 

 

 

 



 

Unit 1: Algorithmic problem solving                                                                                                                                            25 

Write an algorithm to print n odd numbers 

 

Step 1: start 

step 2: get n value 

step 3: set initial value i=1 

step 4: check if(i<=n) goto step 5 else goto step 8  

step 5: print i value 

step 6: increment i value by 2 

step 7: goto step 4 

step 8: stop 

 

BEGIN 

GET n 

INITIALIZE i=1 

WHILE(i<=n) DO 

      PRINT i 

      i=i+2 

ENDWHILE 

END 

 

 
 

 

 



 

Unit 1: Algorithmic problem solving                                                                                                                                            26 

Write an algorithm to print n even numbers 

 

Step 1: start 

step 2: get n value 

step 3: set initial value i=2 

step 4: check if(i<=n) goto step 5 else goto step8  

step 5: print i value 

step 6: increment i value by 2 

step 7: goto step 4 

step 8: stop  

 

 

BEGIN 

GET n 

INITIALIZE i=2 

WHILE(i<=n) DO 

      PRINT i 

      i=i+2 

ENDWHILE 

END 

 

 
 

 

 



 

Unit 1: Algorithmic problem solving                                                                                                                                            27 

Write an algorithm to print squares of a number 

Step 1: start 

step 2: get n value 

step 3: set initial value i=1 

step 4: check i value if(i<=n) goto step 5 else goto step8  

step 5: print i*i value 

step 6: increment i value by 1 

step 7: goto step 4 

step 8: stop 

 

BEGIN 

GET n 

INITIALIZE i=1 

WHILE(i<=n) DO 

      PRINT i*i 

      i=i+2 

ENDWHILE 

END 

 

 
 

 

 

 



 

Unit 1: Algorithmic problem solving                                                                                                                                            28 

Write an algorithm to print to print cubes of a number 

Step 1: start 

step 2: get n value 

step 3: set initial value i=1 

step 4: check i value if(i<=n) goto step 5 else goto step8  

step 5: print i*i *i value 

step 6: increment i value by 1 

step 7: goto step 4 

step 8: stop 

BEGIN 

GET n 

INITIALIZE i=1 

WHILE(i<=n) DO 

      PRINT i*i*i 

      i=i+2 

ENDWHILE 

END 

 

 
 

 

 

 

 



 

Unit 1: Algorithmic problem solving                                                                                                                                            29 

Write an algorithm to find sum of a given number 

 

Step 1: start 

step 2: get n value 

step 3: set initial value i=1, sum=0 

Step 4: check i value if(i<=n) goto step 5 else goto step8  

step 5: calculate sum=sum+i 

step 6: increment i value by 1 

step 7: goto step 4 

step 8: print sum value 

step 9: stop 

 

BEGIN 

GET n 

INITIALIZE i=1,sum=0 

WHILE(i<=n) DO 

      sum=sum+i 

      i=i+1 

ENDWHILE 

PRINT sum 

END 

 
 

 

 



 

Unit 1: Algorithmic problem solving                                                                                                                                            30 

Write an algorithm to find factorial of a given number 

 

Step 1: start 

step 2: get n value 

step 3: set initial value i=1, fact=1 

Step 4: check i value if(i<=n) goto step 5 else goto step8  

step 5: calculate fact=fact*i 

step 6: increment i value by 1 

step 7: goto step 4 

step 8: print fact value 

step 9: stop 

 

BEGIN 

GET n 

INITIALIZE i=1,fact=1 

WHILE(i<=n) DO 

      fact=fact*i 

      i=i+1 

ENDWHILE 

PRINT fact 

END 

 

 

 



 

Unit 1: Algorithmic problem solving                                                                                                                                            31 

 Basic python programs: 

Addition of two numbers Output 

a=eval(input(“enter first no”))  

b=eval(input(“enter second  no”))  

c=a+b  

print(“the sum is “,c)  

 

enter first no  

5  

enter second no  

6  

the sum is 11  

Area of rectangle Output 

l=eval(input(“enter the length of rectangle”))  

b=eval(input(“enter the breath of rectangle”))  

a=l*b  

print(a)  

enter the length of rectangle 5  

enter the breath of rectangle 6  

30  

 

Area & circumference of circle output 

r=eval(input(“enter the radius of circle”))  

a=3.14*r*r  

c=2*3.14*r 

print(“the area of  circle”,a)  

print(“the circumference of  circle”,c)  

enter the radius of circle4  

the area of  circle 50.24  

the circumference of  circle 

25.12 

 

Calculate simple interest Output 

p=eval(input(“enter principle amount”))  

n=eval(input(“enter no of years”))  

r=eval(input(“enter rate of interest”))  

si=p*n*r/100  

print(“simple interest is”,si)  

 

enter principle amount 5000  

enter no of years 4  

enter rate of interest6  

simple interest is 1200.0  

 

Calculate engineering cutoff Output 

p=eval(input(“enter physics marks”))  

c=eval(input(“enter chemistry marks”))  

m=eval(input(“enter maths marks”))  

cutoff=(p/4+c/4+m/2)  

print(“cutoff =”,cutoff)  

 

enter physics marks 100  

enter chemistry marks 99  

enter maths marks 96  

cutoff = 97.75  

 

Check voting eligibility output 

age=eval(input(“enter ur age”))  

If(age>=18):  

 print(“eligible for voting”)  

else:  

 print(“not eligible for voting”)  

 

Enter ur age 

19 

Eligible for voting 



 

Unit 1: Algorithmic problem solving                                                                                                                                            32 

Find greatest of three numbers output 

a=eval(input(“enter the value of a”))  

b=eval(input(“enter the value of b”))  

c=eval(input(“enter the value of c”))  

if(a>b):  

 if(a>c):  

  print(“the greatest no is”,a)  

 else:   

   print(“the greatest no is”,c)  

else:  

 if(b>c):  

  print(“the greatest no is”,b)  

 else:   

  print(“the greatest no is”,c)  

enter the value of a 9 

enter the value of a 1 

enter the value of a  8 

the greatest no is 9 

Programs on for loop 

Print n natural numbers Output 

for i in range(1,5,1):  

         print(i)  

1 2 3 4  

Print n odd numbers Output 
for i in range(1,10,2):  

        print(i)  

1  3  5  7 9  

Print n even numbers Output 

for i in range(2,10,2):  

        print(i)  

2  4  6  8  

Print squares of numbers  Output 

for i in range(1,5,1):  

         print(i*i)  

1  4  9  16  

Print squares of numbers Output 

for i in range(1,5,1):  

        print(i*i*i) 

1   8    27   64 

Programs on while loop 



 

Unit 1: Algorithmic problem solving                                                                                                                                            33 

Print n natural numbers Output 

i=1  

while(i<=5):  

 print(i)  

 i=i+1  

 

1  

2  

3  

4  

5  

Print n odd numbers Output 

i=2  

while(i<=10):  

 print(i)  

 i=i+2  

 

2  

4  

6  

8  

10 

Print n even numbers Output 

i=1  

while(i<=10):  

 print(i)  

 i=i+2  

 

1  

3  

5  

7  

9 

Print n squares of numbers Output 

i=1  

while(i<=5):  

 print(i*i)  

 i=i+1  

 

1  

4  

9  

16  

25  

 

Print n cubes numbers Output 

i=1  

while(i<=3):  

 print(i*i*i)  

 i=i+1  

 

1 

8 

27 

 

find sum of n numbers Output 

i=1  

sum=0  

while(i<=10):  

 sum=sum+i  

 i=i+1  

print(sum)  

 

55  

 



 

Unit 1: Algorithmic problem solving                                                                                                                                            34 

factorial of n numbers/product of n numbers Output 

i=1  

product=1  

while(i<=10):  

 product=product*i  

 i=i+1  

print(product)  

 

3628800  

 

sum of n numbers Output 

def add():  

 a=eval(input(“enter a value”))  

 b=eval(input(“enter b value”))  

 c=a+b  

 print(“the sum is”,c)  

add()  

 

enter a value  

6  

enter b value  

4  

the sum is 10  

 

area of rectangle using function Output 

def area(): 

      l=eval(input(“enter the length of rectangle”))  

      b=eval(input(“enter the breath of rectangle”))  

      a=l*b  

      print(“the area of rectangle is”,a)  

area() 

 

enter the length of 

rectangle 20 

enter the breath of 

rectangle 5 

the area of rectangle is 

100 

swap two values of variables Output 

def swap():  

 a=eval(input("enter a value"))  

 b=eval(input("enter b value"))  

 c=a  

 a=b  

 b=c  

 print("a=",a,"b=",b)  

swap()  

  

 

 

 

 

 

enter a value3  

enter b value5  

a= 5 b= 3  

 



 

Unit 1: Algorithmic problem solving                                                                                                                                            35 

check the no divisible by 5 or not Output 

def div():  

    n=eval(input("enter n value"))  

    if(n%5==0):  

        print("the number is divisible by 5")  

    else:  

        print("the number not divisible by 5")  

div()  

 

enter n value10  

the number is divisible by 

5  

 

find reminder and quotient of given no Output 

def reminder():  

        a=eval(input("enter a"))  

        b=eval(input("enter b"))  

        R=a%b  

        print("the reminder is",R)  

def quotient():  

        a=eval(input("enter a"))  

        b=eval(input("enter b"))  

        Q=a/b  

        print("the reminder is",Q)  

reminder()  

quotient()  

 

enter a 6 

enter b 3 

the reminder is 0 

enter a 8 

enter b 4 

the reminder is 2.0 

convert the temperature Output 

 

def ctof():  

        c=eval(input("enter temperature in centigrade"))  

        f=(1.8*c)+32  

        print("the temperature in Fahrenheit is",f)  

def ftoc():  

        f=eval(input("enter temp in Fahrenheit"))  

        c=(f-32)/1.8  

        print("the temperature in centigrade is",c)  

ctof()  

ftoc()  

 

 

 

 

enter temperature in 

centigrade 37 

the temperature in 

Fahrenheit is 98.6 

enter temp in Fahrenheit 

100 

the temperature in 

centigrade is 37.77 



 

Unit 1: Algorithmic problem solving                                                                                                                                            36 

program for basic calculator Output 

def add():  

        a=eval(input("enter a value"))  

        b=eval(input("enter b value"))  

        c=a+b  

        print("the sum is",c)  

def sub():  

        a=eval(input("enter a value"))  

        b=eval(input("enter b value"))  

        c=a-b  

        print("the diff is",c)  

def mul():  

        a=eval(input("enter a value"))  

        b=eval(input("enter b value"))  

        c=a*b  

        print("the mul is",c)  

def div():  

        a=eval(input("enter a value"))  

        b=eval(input("enter b value"))  

        c=a/b  

        print("the div is",c)  

add()  

sub()  

mul()  

div()  

 

enter a value 10  

enter b value 10 

the sum is 20 

enter a value 10  

enter b value 10 

the diff is 0 

enter a value 10 

enter b value 10 

the mul is 100 

enter a value 10 

enter b value 10 

the div is 1 

 

 

 

 

 

 

 

 

 

 

 



 

Unit 1: Algorithmic problem solving                                                                                                                                            37 

Part A: 

1. What is mean by problem solving? 

2. List down the problem solving techniques? 

3. Define algorithm? 

4. What are the properties of algorithm? 

5. List down the equalities of good algorithm? 

6. Define statements? 

7. Define state? 

8. What is called control flow? 

9. What is called sequence execution? 

10. Define iteration? 

11. What is mean by flow chart? 

12. List down the basic symbols for drawing flowchart? 

13. List down the rules for drawing the flowchart? 

14. What are the advantages of flowchart? 

15. What are the disadvantages of flowchart? 

16. Define pseudo code? 

17. List down the keywords used in writing pseudo code? 

18. Mention the advantages of using pseudo code? 

19. Mention the disadvantages of using pseudo code? 

20. What are the ways available to represent algorithm? 

21. Differentiate flowchart and pseudo code? 

22. Differentiate algorithm and pseudo code? 

23. What is programming language? 

24.  Mention the types of programming language? 

25. What is mean by machine level language? 

26. What are the advantages and disadvantages of machine level language? 

27. What is high level programming language and mention its advantages? 

28. What are the steps in algorithmic problem solving? 

29. Write the algorithm for any example? 

30. Draw the flow chart for any example? 

31. Write pseudo code for any example? 

Part B: 

1. Explain in detail about problem solving techniques? 

2. Explain in detail about building blocks of algorithm? 

3. Discuss the symbols and rules for drawing flowchart with the example? 

4. Explain in detail about programming language? 

5. Discuss briefly about algorithmic problem solving? 

6. Write algorithm, pseudo code and flow chart for any example? 

7. Explain in detail about simple strategies for developing algorithms? 


