
GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

 UNIT III   CONTROL FLOW, FUNCTIONS  

Conditionals: Boolean values and operators, conditional (if), alternative 

(ifelse), chained conditional (if-elif-else); Iteration: state, while, for, break, 

continue, pass; Fruitful functions: return values, parameters, scope: local and 

global, composition, recursion; Strings:  string slices, immutability, string 

functions and methods, string module; Lists as arrays. Illustrative programs: 

square root, gcd, exponentiation, sum the array of numbers, linear search, 

binary search.  

3.1 BOOLEAN VALUES  

Any object can be tested for truth value, for use in an if or while condition or as operand 

of the Boolean operations below. The following values are considered false:  

• None  

• False  

• zero of any numeric type, for example, 0, 0L, 0.0, 0j.  

• any empty sequence, for example, '', (), [].  

• any empty mapping, for example, {}.  

All other values are considered true — so objects of many types are always true.  

Operations and built-in functions that have a Boolean result always return 0 or False for 

false and 1 or True for true, unless otherwise stated.  

3.2 OPERATORS  

Operators are the constructs which can manipulate the value of operands.  

Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is called 

operator.  

Types of Operator  

Python language supports the following types of operators.  

• Arithmetic Operators  

• Comparison (Relational) Operators  

• Assignment Operators  

• Logical Operators  

• Bitwise Operators  

https://docs.python.org/2/reference/compound_stmts.html#if
https://docs.python.org/2/reference/compound_stmts.html#if
https://docs.python.org/2/reference/compound_stmts.html#while
https://docs.python.org/2/reference/compound_stmts.html#while


GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

• Membership Operators  

• Identity Operators  

3.2.1 Arithmetic Operators  

Assume variable a holds 10 and variable b holds 20, then −  

Operator  Description  Example  

+ Addition  Adds values on either side of the operator.  a + b = 30  

- Subtraction  
Subtracts right hand operand from left hand 

operand.  

a – b = -10  

* Multiplication  Multiplies values on either side of the 

operator  

a * b = 200  

/ Division  
Divides left hand operand by right hand 

operand  

b / a = 2  

% Modulus  
Divides left hand operand by right hand 

operand and returns remainder  

b % a = 0  

** Exponent  
Performs exponential (power) calculation on 

operators  

a**b =10 to the power 20  

//  

Floor Division - The division of operands 

where the result is the quotient in which the 

digits after the decimal point are removed. 

But if one of the operands is negative, the 

result is floored, i.e., rounded away from 

zero (towards negative infinity):  

9//2 = 4 and 9.0//2.0 =  

4.0, -11//3 = -4, -11.0//3  

= -4.0  

Example.py  

a = 21 b 

= 10 c = 

0 c = a + 

b  

print "Line 1 - Value of c is ", c  

  
c = a - b  

print "Line 2 - Value of c is ", c  

  

c = a * b  

print "Line 3 - Value of c is ", c  

  
c = a / b  

print "Line 4 - Value of c is ", c   

  

c = a % b  

print "Line 5 - Value of c is ", c  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

  

a = 2 b 

= 3 c = 

a**b   

print "Line 6 - Value of c is ", c  

a = 10 b 

= 5 c = 

a//b   

print "Line 7 - Value of c is ", c  

  

Output:  

Line 1 - Value of c is 31  

Line 2 - Value of c is 11  

Line 3 - Value of c is 210  

Line 4 - Value of c is 2  

Line 5 - Value of c is 1  

Line 6 - Value of c is 8  

Line 7 - Value of c is 2  

3.2.2 Comparison Operators  

These operators compare the values on either sides of them and decide the relation 

among them. They are also called Relational operators.  

Assume variable a holds 10 and variable b holds 20, then −  

Operator  Description  Example  

==  
If the values of two operands are equal, then the 

condition becomes true.  

(a == b) is not true.  

!=  
If values of two operands are not equal, then 

condition becomes true.  

  

>  
If the value of left operand is greater than the value 

of right operand, then condition becomes true.  

(a > b) is not true.  

<  
If the value of left operand is less than the value of 

right operand, then condition becomes true.  

(a < b) is true.  

>=  

If the value of left operand is greater than or equal to 

the value of right operand, then condition becomes 

true.  

(a >= b) is not true.   

<=  

If the value of left operand is less than or equal to 

the value of right operand, then condition becomes 

true.  

(a <= b) is true.   

Example.py  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

a = 21 b 

= 10 c = 

0  

  

  

if ( a == b ):    print "Line 1 - a is 

equal to b" else:    print "Line 1 - a 

is not equal to b"  

  
if ( a != b ):  

   print "Line 2 - a is not equal to b" 

else:    print "Line 2 - a is equal to 

b"  

  

if ( a <> b ):  

   print "Line 3 - a is not equal to b" 

else:    print "Line 3 - a is equal to 

b"  

  
if ( a < b ):  

   print "Line 4 - a is less than b"  

else:    print "Line 4 - a is not less 

than b"  

  

if ( a > b ):  

   print "Line 5 - a is greater than b" 

else:    print "Line 5 - a is not greater 

than b"  

  
a = 5; b = 

20; if ( a <= 

b ):  

   print "Line 6 - a is either less than or equal to  b" 

else:    print "Line 6 - a is neither less than nor equal 

to  b"  

  
if ( b >= a ):  

   print "Line 7 - b is either greater than  or equal to b" 

else:    print "Line 7 - b is neither greater than  nor equal 

to b"  

  

Output  

Line 1 - a is not equal to b  

Line 2 - a is not equal to b  

Line 3 - a is not equal to b  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

Line 4 - a is not less than b  

Line 5 - a is greater than b  

Line 6 - a is either less than or equal to b  

Line 7 - b is either greater than or equal to b  

3.2.3 Assignment Operators  

Assume variable a holds 10 and variable b holds 20, then −  

Operator  Description  Example  

=  Assigns values from right side 

operands to left side operand  

c = a + b assigns value of a + 

b into c  

+= Add AND  It adds right operand to the left 

operand and assign the result to left 

operand  

c += a is equivalent to c = c + 

a  

-= Subtract  

AND  

It subtracts right operand from the left 

operand and assign the result to left 

operand  

c -= a is equivalent to c = c - a  

*= Multiply  

AND  

It multiplies right operand with the left 

operand and assign the result to left 

operand  

c *= a is equivalent to c = c * 

a  

/= Divide AND  It divides left operand with the right 

operand and assign the result to left 

operand  

c /= a is equivalent to c = c / 

ac /= a is equivalent to c = c 

/ a  

%= Modulus  

AND  

It takes modulus using two operands 

and assign the result to left operand  

c %= a is equivalent to c = c 

% a  

**= Exponent  

AND  

Performs exponential (power) 

calculation on operators and assign 

value to the left operand  

c **= a is equivalent to c = c 

** a  

//= Floor  

Division  

It performs floor division on operators 

and assign value to the left operand  

c //= a is equivalent to c = c 

// a  

  

Example.py 

a = 21 b = 

10 c = 0  

  

c = a + b print "Line 1 - Value 

of c is ", c  

  

c += a print "Line 2 - Value of 

c is ", c   

  
c *= a print "Line 3 - Value of 

c is ", c   

  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

c /= a  print "Line 4 - Value of 

c is ", c   

  

c  = 2 c %= a print "Line 5 - 

Value of c is ", c  

  

c **= a print "Line 6 - Value of 

c is ", c  

  
c //= a print "Line 7 - Value of 

c is ", c Output:  

Line 1 - Value of c is 31  

Line 2 - Value of c is 52  

Line 3 - Value of c is 1092  

Line 4 - Value of c is 52  

Line 5 - Value of c is 2  

Line 6 - Value of c is 2097152 Line 

7 - Value of c is 99864  

3.2.4 Bitwise Operators  

Bitwise operator works on bits and performs bit by bit operation. Assume if a = 60; and 

b = 13;  Now in binary format they will be as follows − a = 0011 1100 b = 0000 1101  

-----------------  

a&b = 0000 1100 

a|b = 0011 1101 a^b 

= 0011 0001  

~a  = 1100 0011  

There are following Bitwise operators supported by Python language  

Operator  Description  Example  

& Binary AND  Operator copies a bit to the result 

if it exists in both operands   

(a & b) (means 0000 1100)  

| Binary OR  It copies a bit if it exists in either 

operand.  

(a | b) = 61 (means 0011  

1101)  

^ Binary XOR  It copies the bit if it is set in one 

operand but not both.  

(a ^ b) = 49 (means 0011  

0001)  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

~ Binary Ones  

Complement  

It is unary and has the effect of 

'flipping' bits.  

(~a ) = -61 (means 1100 0011 

in 2's complement form due to 

a signed binary number.  

<< Binary Left  

Shift  

The left operands value is moved 

left by the number of bits specified 

by the right operand.  

a << 2 = 240 (means 1111 

0000)  

>> Binary Right  

Shift  

The left operands value is moved 

right by the number of bits 

specified by the right operand.  

a >> 2 = 15 (means 0000 

1111)  

Example.py  

a = 60            # 60 = 0011 1100  b 

= 13            # 13 = 0000 1101  c = 

0  

  
c = a & b;        # 12 = 0000 1100  

print "Line 1 - Value of c is ", c  

  

c = a | b;        # 61 = 0011 1101   

print "Line 2 - Value of c is ", c  

  
c = a ^ b;        # 49 = 0011 0001  

print "Line 3 - Value of c is ", c  

  

c = ~a;           # -61 = 1100 0011  

print "Line 4 - Value of c is ", c  

  

c = a << 2;       # 240 = 1111 0000  

print "Line 5 - Value of c is ", c  

  
c = a >> 2;       # 15 = 0000 1111 print 

"Line 6 - Value of c is ", c  

Output:  

Line 1 - Value of c is 12  

Line 2 - Value of c is 61  

Line 3 - Value of c is 49  

Line 4 - Value of c is -61  

Line 5 - Value of c is 240 Line 

6 - Value of c is 15  

3.2.5 Logical Operators  

Operator  Description  Example  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

and Logical AND  If both the operands are true then 

condition becomes true.  

(a and b) is true.  

or Logical OR  If any of the two operands are nonzero 

then condition becomes true.  

(a or b) is true.  

not Logical NOT  Used to reverse the logical state of its 

operand.  

Not(a and b) is false.   

3.2.6 Membership Operators  

Python’s membership operators test for membership in a sequence, such as strings, 

lists, or tuples. There are two membership operators as explained below  

Operator  Description  Example  

in  Evaluates to true if it finds a 

variable in the specified sequence 

and false otherwise.  

x in y, here in results in a 1 if x is a 

member of sequence y.  

not in  Evaluates to true if it does not 

finds a variable in the specified 

sequence and false otherwise.  

x not in y, here not in results in a 1 if 

x is not a member of sequence y.  

  

Example.py a 

= 10  

b = 20  

list = [1, 2, 3, 4, 5 ];  

  

if ( a in list ):  

   print "Line 1 - a is available in the given list" else:  

   print "Line 1 - a is not available in the given list"  

  
if ( b not in list ):  

   print "Line 2 - b is not available in the given list" else:  

   print "Line 2 - b is available in the given list"  

  

a = 2 if ( a in 

list ):  

   print "Line 3 - a is available in the given list" 

else:    print "Line 3 - a is not available in the 

given list"  

Output:  

Line 1 - a is not available in the given list  

Line 2 - b is not available in the given list  

Line 3 - a is available in the given list  

3.2.7 Identity Operators  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

Identity operators compare the memory locations of two objects. There are two Identity 

operators explained below:  

Operator  Description  Example  

Is  Evaluates to true if the variables on 

either side of the operator point to 

the same object and false otherwise.  

x is y, here is results in 1 if id(x) 

equals id(y).  

is not  Evaluates to false if the variables on 

either side of the operator point to 

the same object and true otherwise.  

x is not y, here is not results in 1 if 

id(x) is not equal to id(y).  

Example.py  

a = 

20 b = 

20  

  

if ( a is b ):  

   print "Line 1 - a and b have same identity" else:  

   print "Line 1 - a and b do not have same identity"  

  
if ( id(a) == id(b) ):  

   print "Line 2 - a and b have same identity" else:  

   print "Line 2 - a and b do not have same identity"  

  

b = 

30 if ( a 

is b ):  

   print "Line 3 - a and b have same identity" else:  

   print "Line 3 - a and b do not have same identity"  

  
if ( a is not b ):  

   print "Line 4 - a and b do not have same identity" else:  

   print "Line 4 - a and b have same identity"  

Output:  

Line 1 - a and b have same identity  

Line 2 - a and b have same identity  

Line 3 - a and b do not have same identity  

Line 4 - a and b do not have same identity  

3.2.8 OPERATORS PRECEDENCE  

The following table lists all operators from highest precedence to lowest.  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

Operator  Description  

**  Exponentiation (raise to the power)  

~ + -  
Complement, unary plus and minus (method names for 

the last two are +@ and -@)  

* / % //  Multiply, divide, modulo and floor division  

+ -  Addition and subtraction  

>> <<  Right and left bitwise shift  

&  Bitwise 'AND'  

^ |  Bitwise exclusive `OR' and regular `OR'  

<= < > >=  Comparison operators  

<> == !=  Equality operators  

= %= /= //= -= += *= **=  Assignment operators  

is is not  Identity operators  

in not in  Membership operators  

not or and  Logical operators  

  

Example.py  

a = 20 

b = 10 

c = 15 

d = 5 e 

= 0  

  
e = (a + b) * c / d       #( 30 * 15 ) / 5  

print "Value of (a + b) * c / d is ",  e  

  

e = ((a + b) * c) / d     # (30 * 15 ) / 5  

print "Value of ((a + b) * c) / d is ",  e  

  
e = (a + b) * (c / d);    # (30) * (15/5) print 

"Value of (a + b) * (c / d) is ",  e  

  

e = a + (b * c) / d;      #  20 + (150/5)  

print "Value of a + (b * c) / d is ",  e  

  

Output:  

Value of (a + b) * c / d is 90  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

Value of ((a + b) * c) / d is 90  

Value of (a + b) * (c / d) is 90  

Value of a + (b * c) / d is 50  

  

3.3 CONDITIONAL STATEMENTS  

1. if statement  

2. if-else statement  

3. if-elif-else statement  

4. Nested if / conditional statement  

5. Chained conditional  

3.3.1 if statement  

➢ Used to check a condition and control the flow of execution Syntax:  

if expression:  

      statements  

➢ Expression is a logical expression which tests and results either true or false  

Flowchart:  

 
  

  

Example.py number=10 if number>0:     

print(number," is a positive number") 

number=-1 if number>0:  

    print(number," is a positive number")  

  

Output:  

10  is a positive number  

  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

3.3.2 if-else statement  

➢ If there are two statements to be executed alternatively, then if-else statement is 

used.  

➢ If the condition is true, then true statements are executed otherwise statements 

of else part is executed.  

Syntax:              Flowchart:  

  

 

if expression:  

  statements 

else:  

  statements  
 

 
example.py 

number=28 if 

number%2==0:  

    print(number," is a even number") else:  

    print(number," is a odd number")  

  

Output:  

28  is a even number  

  

3.3.3 if-elif-else statement  

➢ It is used to test more than one condition.  

➢ If there are more than two alternatives to select, then nested if 

statements are used. Syntax:  

if expression:  

  body of if elif 

expression:  

  body of elif  

--  

-- 

else:  

  body of else  

  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

 
Example.py a=float(input("Enter the number:")) 

if a>0:     print("The given number is a positive 

number") elif a==0:  

    print("The given number is Zero") else:  

    print("The given number is negative number")  

  

Output:  

Enter the number:-1  

The given number is negative number  

>>>  

Enter the number:0  

The given number is Zero  

>>>   

Enter the number:100  

The given number is a positive number  

  

3.3.4 Nested if statement   

➢ Here a if-elif-else construct is placed inside another if-elif-else construct.  

➢ Indentation has to be clear in flow of statements.  

  

Example.py  

#Program to print a number in text format from 1 to 5 

value=int(input("Enter the value:")) if value<=5:     if 

value==1:         print("One")     elif value==2:         

  

Flo wchart:   

  false   

  

  

  

  

  

  

  

  

  

  

  True   

  

  

  

  

Expression   

Ex pression   

Body of if   Body of elif   
Body of else   



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

print("Two")     elif value==3:         print("Three")     

elif value==4:         print("Four")     elif value==5:         

print("Five") else:  

    print("try a number inside the limit")  

  

Output:  

>>>Enter the value:4  

Four  

>>>Enter the value:99 try a 

number inside the limit  

  

3.3.5 Chained Conditional  

➢ When there are more than two possibilities it requires more than two branches. 

Syntax:  

if expression: 

body of if  

elif expression:  

body of elif  

else:  

body of else  

  

  

Flowchart:  

   
Example.py 

value=10 if 

value==20:  

    print("Got a true value ",value) elif 

value==15:  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

    print("Got a true value ",value) elif 

value==10:  

    print("Got a true value ",value) else:  

    print("Got a false value ",value) 

print("Program Over")  

  

Output:  

>>>Got a true value  10  

Program Over  

  

3.4 ITERATION  
➢ Repeated execution of set of statements until a specified condition becomes true is 

called as iteration.  

➢ Types:  

1. while  

2. for  

  

3.4.1 while loop  
➢ It is an entry controlled loop  

➢ It executes a block of code repeatedly till the condition becomes true.  

  

Syntax:  
  

while expression:    

   statement(s)  

  

Flowchart:  

 

  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

Example.py count=0 

while(count<5):  

    print("the count value is",count)     

count=count+1  

  

Output:  

the count value is 0 the 

count value is 1 the 

count value is 2 the 

count value is 3 the 

count value is 4  

  

3.4.2 Nested while  
➢ It is when a while loop is placed inside another while loop.  

  

Syntax:     while 

expression:       while 

expression:  

    

     statements      

   statements  

  

  

Example.py 

x=-2 y=2 while 

x<=y:     

print("x=",x)     

x=x+1     

while(x<=0):  

        print("x is negative")         

x=x+1  

  

Output: x= -

2 x is 

negative x is 

negative x= 

1 x= 2  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

  

  

  

3.4.3 for loop  
➢ Executes a sequence of statements multiple times.  

  

Syntax:     for val in 

sequence:  

  
      Body of for  

  

➢ Val is a variable that takes value of the item inside the sequence on each 

iteration.  

➢ Loop continues until the last item in the sequence is reached.  

➢ For loop contains initialization & condition part, but increment and 

decrement need not to be defined in python.  

Flowchart:  

  

 

Example.py word 

= "computer" for 

letter in word:     

print(letter)  

  

Output:  

c o  

m  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

p u 

t e 

r  

  
example.py 

num=[20,30,40] for 

i in num:  

    print("The value of i is",i)  

  

Output:  

The value of i is 20  

The value of i is 30 The 

value of i is 40  

  

3.4.4 Nested for loops  

➢ For loop inside another for loop is called as nested for loop.  

  

Syntax:  

    for val in sequence:                        

for val in sequence:    

 statements   statements  

  
  
Example.py  

for x in range(1,3):     for 

y in range(1,3):         

print(x,"*",y,"=",x*y)  

  

Output:  

1 * 1 = 1  

1 * 2 = 2  

2 * 1 = 2  

2 * 2 = 4  

  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

3.4.5 range()  

➢ This function is used for iteration using for loop 

➢ Default initial value of range() is 0. ➢ This 

returns a list of values.  

Syntax:  

  range([start],stop,[step])  

where, start is starting value   stop is end value,which stop-1  

 and step is difference between each number in that sequence.  

  

Example.py  

print("Range with one argument") for 

i in range(5):  

    print(i)  

print("Range with two argument") for 

i in range(10,20):  

    print(i)  

print("Range with three argument") for 

i in range(50,70,3):  

    print(i)  

  

Output:  

Range with one argument  

0  

1  

2  

3  

4  

Range with two argument  

10  

11  

12  

13  

14  

15  

16  

17  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

18  

19  

Range with three argument  

50  

53  

56  

59  

62  

65  

68  

  

xrange()  

➢ This works similar to range() but returns a xrange object.  

➢ This is used when huge billion amount of values are to be generated.  

➢ This works only in Pyhton 2v.  

➢ It uses less memory.  

Syntax:  

   xrange([start],stop,[stop])  

  

example.py  

print("xrange with single argument") for 

i in xrange(6):  

    print(i)  

print("xrange with two arguments") for 

i in xrange(1,7):     

    print(i)  

print("xrange with three arguments") for 

i in xrange(1,10,3):  

    print(i)  

  

  

  
Output:  

xrange with single argument  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

0  

1  

2  

3  

4  

5 xrange with two 

arguments  

1  

2  

3  

4  

5  

6 xrange with three 

arguments  

1  

4  

7  

  
    
3.5 LOOP CONTROL STATEMENTS  

3.5.1 Continue Statement  
➢ This returns control to the beginning of the loop.  

➢ It rejects all remaining statements in the current iteration of the loop and moves 

the control back to the top of the loop.  

➢ It can be used both in while and for loop.  

  

Syntax:       

  

Flowchart:  

continue 
   



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

  

Example.py  

for x in range(1,10):  

    if x==5:  

        continue     

print("x=",x)  

  

Output:  

x= 1 x= 

2 x= 3 

x= 4 x= 

6 x= 7 

x= 8 x= 

9  

3.5.2  break  

➢ It brings control out of the loop.  

➢ Terminates the loop statement and transfers execution to the statement 

immediately following the loop.  

Syntax:  

Flowchart:  
break  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

  

Example.py  

for x in range(1,10):     

if x==5:         break     

print("x=",x)  

  

Output: 

x= 1 x= 

2 x= 3 

x= 4  

  

  

  

  

3.5.3 pass  

➢ The pass statement in Python is used when a statement is required syntactically 

but you do not want any command or code to execute.  

➢ Used to write empty loops.  

  

Syntax:  

  

Example.py  

pass  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

for letter in "python":     

if letter=="h":  

        pass  

        print("pass block")     

print("letter=",letter)  

  

Output: 

letter= p 

letter= y 

letter= t pass 

block letter= 

h letter= o 

letter= n  

  
  
  
  
  
  
  
  
  
  
  
  
3.6 FRUITFUL FUNCTIONS  

  

➢ Functions that return values are called as fruitful functions.  

➢ The opposite is void function.  

➢ The return statement is followed by an expression which is evaluated.  

➢ Its result is returned to the caller as the “fruit” of calling function.  

  

  

               needs         return  

Fruitful Function  
  

Example.py def 

square(b):  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

    c=b*b     return c b=5 

result=square(b) print("The square 

of ",b," is ",result)  

  

Output:  

The square of  5  is  25  

>>>  

  

3.6.1 Return values  
  

➢ Return is a keyword which is used to return a value from the function definition 

block to the function calling line.  

➢ Return takes zero, values or an expression.  

➢ Default value is none.  

➢ If many values are used then, use a tuple or list.  

  

3.6.2 Parameters / Arguments (Refer Unit 2 for detailed explanation) ➢ 

These are the inputs given to a function.  

➢ Input values (parameters) are passed from function calling line to function 

definition block, where here it is called as arguments.  

➢ Types:  

1. Required arguments.  

2. Keyword arguments.  

3. Default arguments.  

4. Variable-length arguments.  

  

  

#Example for Required argument 

Example.py def a(s):     print(s)     

return a(100) a(100,2)  

  

Output:  

100  

TypeError: a() takes 1 positional argument but 2 were given  

>>>  

  

#Example for Keyword argument 

Example.py def a(s,d):     print(s,d)     

return  

a(s=100,d="Black") a(d="Black",s=100)  

  

Output:  

100 Black  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

100 Black  

  

#Example for Default argument 

Example.py  

def a(s,d=20):     

print(d,s)     

return a(15) 

a(15,5)  

  

Output:  

20 15  

5 15  

  

#Example for Variable-length argument 

Example.py def a(*s):     for i in s:         

print(i)     return  

a(10,20,30)    a("hai")  

  

Output:  

10  

20 30 

hai  

  

#Program to add two numbers by passing parameters 

Example.py def add(a,b):     c=a+b     return c  

y=add(2,2) print(y)  

  
Output:  

4  

>>>  
  

3.6.3 Scope of Variables  
➢ The part of a program where a variable is accessible is called its scope, and the 

duration for which the variable exists is called its lifetime.  

➢ There are two basic scopes of variables.  

1. Global variables  

2. Local variables  

➢ A variable defined in the main body of a program at the top is called a global 

variable and is visible throughout the life.  

➢ A variable defined inside a function is local to that function.  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

  

Example.py def ss(a):     a=10     

print("value inside function:",a)     

return a a=20 print("value when return 

is used:",ss(a)) print("value outside 

function:",a) Output:  

value inside function: 10 value 

when return is used: 10 value 

outside function: 20  

  

3.6.4 Composition  

➢ The ability of calling one function from within another function is called as 

composition.  

  

Example.py  

#Program to find square of a number 

c=float(input("Enter a value:")) 

d=c**2 print(d)  

  

Output:  

Enter a value:2.5  

6.25  

➢ Here the input function is used inside float function.  

➢ Input function considers any input value as a string, and according to our needs 

we have to use either int() or float() to convert the input value into integer or 

floating value to process in our program.  

  

3.6.5 Recursion  
➢ Recursion is a process of calling a function by itself again and again until 

some condition is satisfied.  

➢ A recursive function must have  

1. A statement to test whether the function is calling itself again.  

2. A statement that calls the function itself must be an argument.  

3. A conditional statement 4. A return statement.  

Advantages:  

1. The code look clean and elegant.  

2. Large problems broken down into small problems Disadvantages:  

1. Logic is hard to follow. 2. 

It takes more memory.  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

3. It is hard to debug.  

Example.py  

#Program to find factorial using recursion  

  

def factorial(n):     

if n==1:         

return 1     else:  

        return n*factorial(n-1) print(factorial(5))  

  

Output:  

120  

>>>  

  

Example.py  

#Program to find Fibonacci series till 10 terms  

  

def fibo(n):     

if n<=1:         

return n     

else:  

        return(fibo(n-1)+fibo(n-2)) 

terms=10 print("Fibonacci 

series") for i in range(terms):     

print(fibo(i))  

  

Output:  

Fibonacci series  

0  

1  

1  

2  

3  

5  

8  

13  

21  

34  

  

  

  

  
  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

3.7 STRINGS  

➢ It is a sequence of characters treated as a single data item enclosed within either 

single or double quotes or even triple quotes.  

  

Example1.py example='I am found 

of chocolates' print(example) 

example="I am found of ice creams" 

print(example) example='''I am 

found of cakes too''' print(example) 

example='' print(example)  

  

Output:  

I am found of chocolates  

I am found of ice creams  

I am found of cakes too  

  

Example2.py  

#string with single quote 

var1='python' print(var1)  

#string with double quote 

var1="python" print(var1)  

#string with triple quote  

var1="""Python is one of the programming  

        language""" print(var1)  

  

Output: 

python python  

Python is one of the programming  

        Language  

  
  

3.7.1 String Slices  
➢ A portion or a filtered part of a string is called as slice.  

➢ Slice is used to take sub parts of either from list or string.  

  

Syntax:  

  
   Substring=originalstring[start:end]    

  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

Start- start index value which is included  

End- end index value which is excluded  

  

Example  

    0      1       2      3     4  

B  L  A  C  K  

  -5      -4    -3      -2       -1  
  

➢ The above example contains both positive and negative indexing.  

  

Example1.py  

b='Live and let live' 

print(b[0:5]) 

print(b[3:]) 

print(b[:6]) print(b[:])  

  

Output:  

Live  e and 

let live Live 

a  

Live and let live  

>>>  

  

Example2.py str='Python 

Programming' print("The 

Given String is",str)  

print("The first character in the String is",str[0])  

print("The character starting from 3rd to 5th position is",str[2:5])  

print("The String starting from 3rd character is",str[2:]) 

print("The last character of the string is",str[-1]) print("The 

String from negative indices is",str[-5:])  

  

Output:  

The Given String is Python Programming  

The first character in the String is P  

The character starting from 3rd to 5th position is tho  

The String starting from 3rd character is thon Programming  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

The last character of the string is g  

The String from negative indices is mming  

  
3.7.2 Immutability  

➢ Strings in python are immutable i,e after created it cannot be changed.  

➢ No assignments can be done later but updation is possible.  

  

Example1.py  

#NO ITEM ASSIGNMENT IN PYTHON 

var1="python" var1[2]="T"  

  

Output:  

Traceback (most recent call last):     

var1[2]="T"  

TypeError: 'str' object does not support item assignment  

  

Example2.py  

#NO ITEM DELETION IN PYTHON 

var1="python" del var1  

  

Output:  

Traceback (most recent call last):  

TypeError: 'str' object does not support item deletion  

Example3.py 

var1="python" del 

var1 print(var1)  

  

Output:  

Traceback (most recent call last): print(var1)  

NameError: name 'var1' is not defined  

  

Example4.py  

v1 = 'Are you okay!' print("Updated 

String:",v1[:13] +' baby')  

  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

Output:  

Updated String: Are you okay! Baby  

  
  

3.7.3 String Operators  

Assume string variable a holds 'Hello' and variable b holds ' boys ', then −  

Operator  Description  Example  

+  
Concatenation - Adds values on either side 

of the operator  

a + b will give Helloboys  

*  

Repetition - Creates new strings, 

concatenating multiple copies of the same 

string  

a*2 will give -HelloHello  

[]  
Slice - Gives the character from the given 

index  

a[1] will give e  

[ : ]  
Range Slice - Gives the characters from the 

given range  

a[1:4] will give ell  

in  
Membership - Returns true if a character 

exists in the given string   

H in a will give true   

not in  

Membership - Returns true if a character 

does not exist in the given string  

M not in a will give true  

  
  

  

Example.py  

a='I hate bitter food' b="badly" print("The Concatenation of 

the String is:",a+b) print("The Repetition of the String 

is:",a*2) print("The Slicing of the string is:",a[2]) print("The 

Slicing of the string is:",a[3:6]) print("The membership 

operator of the string is:",'t' in a) print("The membership 

operator of the string is:",'B' not in b)  

  

Output:  

The Concatenation of the String is: I hate bitter foodbadly  

The Repetition of the String is: I hate bitter foodI hate bitter food  

The Slicing of the string is: h  

The Slicing of the string is: ate  

The membership operator of the string is: True  

The membership operator of the string is: True  

>>>  

  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

3.7.4 String formatting Operator ➢ 

Symbol used is %.  

➢ It is mainly used for print()  

Format Symbol  Conversion  

%c  character  

%s  string conversion via str() prior to formatting  

%i  signed decimal integer  

%d  signed decimal integer  

%u  unsigned decimal integer  

%o  octal integer  

%x  hexadecimal integer (lowercase letters)  

%X  hexadecimal integer (UPPERcase letters)  

%e  exponential notation (with lowercase 'e')  

%E  exponential notation (with UPPERcase 'E')  

%f  floating point real number  

%g  the shorter of %f and %e  

%G  the shorter of %f and %E  

  
  
3.7.5 Escape sequences in string  

  

Escape Sequence  Description  

\newline  Backslash and newline ignored  

\\  Backslash  

\'  Single quote  

\"  Double quote  

\a  ASCII Bell  

\b  ASCII Backspace  

\f  ASCII Formfeed  

\n  ASCII Linefeed  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

\r  ASCII Carriage Return  

\t  ASCII Horizontal Tab  

\v  ASCII Vertical Tab  

\ooo  Character with octal value ooo  

\xHH  Character with hexadecimal value HH  

  

3.7.6 String functions & String Methods  
➢ Many built-in string methods of strings are available. ➢ 

Some examples are.,  

capitalize()  center()  casefold()  count()  endswith()  encode()  

find()  format()  index()  split()  rsplit()  title()  

zfill()  isalpha()  isdecimal()  isdigit()  islower()  isupper()  

join()  strip()  partition()  replace()  startswith()  isnumeric()  

  

1. capitalize()function  

➢ This returns a string with first letter in capital letters.  

➢ Syntax:      

     stringname.capitalize ()  

  

➢ This does not takes any argument.  

➢ If first letter is already a capital letter or non-alphabet, then it returns the 

original string.  

Example.py var1="python 

programming"  

print("The result of capitalize function is",var1.capitalize())  

  

Output:  

The result of capitalize function is Python programming  

  

2.center() function  

➢ This method returns a string padded with specified character to fill.  

➢ It does not modify the original string.  

➢ Syntax:  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

  stringname.center(width[,fillchar])    

        where width is length of the string & fill char is character to be 

filled.  

  

Example.py  

str="I lost my books!" print(str.center(18,'a'))  

  

Output:  

aI lost my books!a  

  
3.casefold() function  

➢ This method removes all case variations in a string.  

➢ It is used for caseless matching.  

➢ It doesnot take any parameters.  

➢ Syntax:  

               string.casefold()  

  

Example.py a1="PYTHON 

programming"  

print("The result of casefold function is",a1.casefold()) Output:  

The result of casefold function is python programming  

>>>  

  

  

4.count() function  

➢ This function returns number of occurrences of substring in the range[start,end]. 

➢ Syntax  

    Stringname.count(substring,start= … , end=…)   where 

substring whose count is to be found.& start,end or optional. 

Example.py var1="Engineering Knowledge" print("The result of 

count function is",var1.count('e'))  

Output:  

The result of count function is 4  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

  

5.endswith() function  

➢ This method returns True if a string ends with the specified suffix otherwise 

return false. ➢ Syntax:   

    Str.endswith(suffix[,start[,end]])    

where suffix is string to be checked * start, end are optional.  

Example.py t="English is just a language 

not knowledge" result=t.endswith(" 

knowledge") print(result) 

result=t.endswith(" knowledge.") 

print(result) result=t.endswith("not") 

print(result)  

  

Output:  

True  

False  

False  

>>>  

  

  

  
6.find() function  

➢ This function is used to return the lowest index of the substring (if found) 

otherwise returns -1.  

➢ Syntax:  

                str.find(sub[,start[,end]])   

  

Example.py var1="PYTHON 

programming"  

print("The result of find function is",var1.find('PYTHON')) print("The 

result of find function is",var1.find('Pyhton'))  

  

Output:  

The result of find function is 0  

The result of find function is -1  

>>>  

  

7.format()function  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

➢ This is used to make the presentation of output more neatly ➢ Syntax:    

 template.format(posarg1,
  

posarg2,…..,keyarg0=v0,keyarg1=v1,….) 

posarg is positional arguments & keyarg is keyword argument. Example.py  

print("Hi {},welcome to {}".format("all","python"))  

#positional arguments print("Hi {1},welcome to 

{0}".format("all","python"))  

#keyword arguments print("Hi {key},welcome to 

{name}".format(key="all",name="python"))  

#mixed arguments print("Hi {0},welcome to 

{name}".format("all",name="python"))  

  

Output:  

Hi all,welcome to python Hi 

python,welcome to all  

Hi all,welcome to python  

Hi all,welcome to python  

>>>  

  

  

8.index()function  

➢ This function returns the index of a substring inside the string otherwise it raises 

a value error exception.  

➢ Syntax:  

 str.index(sub[,start[,end]])  

  

Example.py var1="welcome to python 

programming" result=var1.index('to 

python') print("substring 'to python' 

",result)  

Output:  

substring 'to python'  8  

  

9.split() function  

➢ It breaks up a string at the specified separator and returns.  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

➢ Syntax:  str.split([separator[,max]])   

where separator is the place where the split occurs & max is maximum number of splits. 

Example.py new='abcdef' items='black,blue,green' print(new.split()) 

print(items.split(','))  

Output:  

['abcdef']  

['black', 'blue', 'green']  

  

  

  

10.startswith()function  

➢ This method returns True if a string starts with the specified prefix otherwise 

returns false. ➢ Syntax:  

    str.startswith(prefix[,start[,end]])    

  

Example.py t1="Computer 

Language" 

r1=t1.startswith('Language',9) 

print(r1) 

r1=t1.startswith('Language',2) 

print(r1)  

  

Output:  

True False  

  

3.7.7 String module  

➢ String module has numerous predefined methods to process in python. 

Example.py (String module)  

import string s="Welcome to the world of Robotics" 

print("Upper case:",str.upper(s)) print("Lower 

case:",str.lower(s)) print("Split:",str.split(s)) 

print("Join:"," ".join(s)) 

print("Replace:",str.replace(s,"Robotics","Innovation")) 



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

print("Find:",str.find(s,"world"),str.find(s,"of")) 

print("Count:",str.count(s,"t"))Output:  

  

Output:  

Upper case: WELCOME TO THE WORLD OF ROBOTICS  

Lower case: welcome to the world of robotics  

Split: ['Welcome', 'to', 'the', 'world', 'of', 'Robotics']  

Join: W e l c o m e   t o   t h e   w o r l d   o f   R o b o t i c s  

Replace: Welcome to the world of Innovation  

Find: 15 21  

Count: 3  

Example.py (string methods without using string module functions)  

text="Welcome to the world of Robotics" 

print("Upper case:",text.upper()) print("Lower 

case:",text.lower()) print("Split:",text.split()) 

print("Join:","+".join(text.split()))  

print("Replace:",text.replace("Robotics","Innovation")) 

print("Find:",text.find("world"),text.find("of")) print("Count:",text.count("t"))  

  

Output:  

Upper case: WELCOME TO THE WORLD OF ROBOTICS  

Lower case: welcome to the world of robotics  

Split: ['Welcome', 'to', 'the', 'world', 'of', 'Robotics']  

Join: Welcome+to+the+world+of+Robotics  

Replace: Welcome to the world of Innovation  

Find: 15 21 Count: 

3  

  

3.8 LISTS AS ARRAYS  

➢ A List is a group of values.  

➢ Each and every value in a list is called as elements or items.  

➢ Each element is separated using ,. ➢ List can also be sliced as [m:n]. 

Example.py  

a=[1,2,5,8,9] b=[“a”,”g”,”r”] 

c=[67,”red”,90,”yellow”]  

3.8.1 Accessing values in Lists:  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

➢ [] are used to access values in a list for slicing along with the index or 

indices to obtain value available at that index.  

➢ Slice[m:n] where m is starting index which is included & n in end index 

which is excluded. Example.py  

l1=['English','Maths',1000,3000] 

l2=[10,20,30,40,50] print(l1[0]) 

print(l2[2:4])  

print(l1[:-2]) print(l2[-6])  

  

Output:  

English  

[30, 40]  

['English', 'Maths']  

Traceback (most recent call last):  

  File "python", line 6, in <module> IndexError: 

list index out of range  

  

3.8.2 Updating list  

➢ Single or multiple elements can be updated in a list by giving the slice on the 

lefthand side of the assignment operator and also add the elements in a list with 

the append() method.  

Example.py  

s=['Red','green','Blue','yellow','Purple'] 

print("value at index 2:",s[2]) 

s[2]='Lavender' print(s)  

s.append('Orange') print(s)  

  

Output:  

value at index 2: Blue  

['Red', 'green', 'Lavender', 'yellow', 'Purple']  

['Red', 'green', 'Lavender', 'yellow', 'Purple', 'Orange']  

  

3.8.3 Deleting elements in a List  

➢ When index of element is known then, ‘del’ keyword is used to delete.  

➢ When element to delete is known, then remove() method is used.  

Example.py  

s=['Red','green','Blue','yellow','Purple'] 

print(s) del s[2] print(s)  

s.remove('yellow') print(s)  

  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

Output:  

['Red', 'green', 'Blue', 'yellow', 'Purple']  

['Red', 'green', 'yellow', 'Purple']  

['Red', 'green', 'Purple']  

3.9 ILLUSTRATIVE PROGRAMS  

1. Square root of a number 
import math num=16 

result=math.sqrt(num) 

print("Square root value 

is:",result)  

  

Output:  

   Square root value is: 4.0  

  

2. GCD of two numbers def 

gcd(a,b):   if(b==0):     return a   

else:  

    return gcd(b,a%b) a=int(input("Enter 

the first number:")) b=int(input("Enter 

the second number:")) result=gcd(a,b) 

print("GCD is:",result)  

  

Output:  

  Enter the first number: 30  

  Enter the second number: 12  

  GCD is: 6  

  

3. Exponentiation of a 

number def power(base,exp):  

if(exp==1):   return(base)  

if(exp!=1):  

  return(base*power(base,exp-1)) 

base=int(input("Enter base: ")) 

exp=int(input("Enter exponential value: ")) 

print("Result:",power(base,exp))  

  

Output:  

  Enter base:  3  

  Enter exponential value:  2  

  Result: 9  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

  

  

4. Sum of array of numbers 
b=[2,5,8,1,0,9,5] sum=0 for i in b:  

  sum=sum+i print("Sum of array of numbers in 

list is :",sum)  

  

Output:  

  Sum of array of numbers in list is : 30  

  
5. Linear search  

list=[8,4,10,54,89] search=int(input("Enter the 

number to search:")) length=len(list) for i in 

range(0,length):   if list[i]==search:  

    print(search," is found at the position 

",i+1)     break else:  

  print("Number not found")  

  

Output:  

  Enter the number to search: 10  

  10  is found at the position  3  

  

  Enter the number to search: 1  

  Number not found  

  

6. Binary search  

def binarysearch(sortedlist,n,x):      start = 0     end = n - 1     

while(start <= end):       mid = (start + end)//2       

mid=int(mid) #gives mid a rounded value if it is in float       

if (x == sortedlist[mid]):  

       return mid       elif(x < 

sortedlist[mid]):  

       end = mid - 1  

        
      else:  

       start = mid + 1      

return -1  

  

n =5 sortedlist = 

[10,23,38,41,50]  

  



GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING        DEPT OF CSE 

  

 

  

x = int(input("Enter the number to search: ")) 

position = binarysearch(sortedlist, n, x) if(position 

!= -1):  

 print("Entered number %d is present at position: %d"%(x,position+1)) else:  

 print("Entered number %d is not present in the list"%x)  

  

Output:  

Enter the number to search: 38  

Entered number 38 is present at position: 3  


