
GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

UNIT IV COMPOUND DATA: LISTS, TUPLES, DICTIONARIES

Lists, list operations, list slices, list methods, list loop, mutability, aliasing, cloning

lists, list parameters; Tuples, tuple assignment, tuple as return value; Dictionaries:

operations and methods; advanced list processing - list comprehension, Illustrative

programs: selection sort, insertion sort, merge sort, quick sort.

4.1 LIST

• A list is a versatile data type contains items separated by commas and enclosed within

square brackets ([]). An item can be of any type.

• Each and every item has its unique index.

• A list contains different data type such as string, integer, float, real and another list.

Example:

L1= [1, 2, 3] #list with integer data type

L2 = [] #empty list

L3= [[4,8],L1]

The above list can be expanded as

 L3= [[4,8] , [1,2,3]]

4.1.1 List indexing

• Positions are numbered from left to right starting at 0 and it is called as positive

indexing.Positions can also be numbered from right to left starting at -1 and it is called as

negative indexing.

0 1 2 3 4 5

P Y T H O N

-6 -5 -4 -3 -2 -1

4.1.2 List Operations

• List can perform operations like a string such as concatenation, indexing, slicing, the len

function etc.

Concatenation Operator (+):

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

 The concatenation operator (+) is used to add a list of elements to the existing list when both the

lists are of the same type. Example.py

list1=[1,2,3,4]+[10,20,30] list2=list1+["Numbers"]

print(list1)

print(list2) Output:

 [1, 2, 3, 4, 10, 20, 30]

[1, 2, 3, 4, 10, 20, 30, 'Numbers']

Repetition Operator (*):

 “*” operator occurs between a sequence s and an integer n, a new sequence containing

‘n’ repetitions of the elements of s is obtained.

Example.py list1=[1,2,3,4]*2 list2="&"*3

print(list1) print(list2) Output:

[1, 2, 3, 4, 1, 2, 3, 4]

&&&

len(): len(s) returns the number of element in a sequence s.

Example.py

list1=[1,2,3,4]

print(len(list1)) Output:

4

max () & min(): max(s) returns the largest value in a sequence s and min(s) returns the smallest

value in a sequence s Example.py

list1=[1,2,3,4]

print(max(list1))

print(min(list1)) Output:

4

1

Membership Operator:

 The “in” operator is used to test the membership. The operator returns true if the element is present

in a list otherwise it returns false. Example.py

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

list1=[1,2,3,4] print(2

in list1) print(6 in

list1) Output:

True

False

Inverse Operator:

 The inverse operator “not in” returns false if the element is present in alist otherwise it

returns true. Example.py

list1=[1,2,3,4] print(3

not in list1) print(7

not in list1) Output:

False

True

list():

 This function is used to convert a tuple or string into list. The list() method takes

sequence types and converts them into lists. Example.py tuple1=(1,2,3,4)

print(list(tuple1)) Output:

[1,2,3,4]

4.7.3 List Slices / List Index

 We can use the index operator [] to access an item in a list. Index starts from 0. So, a list having 5

elements will have index from 0 to 4.Trying to access an element other that this will raise an

IndexError. The index must be an integer. We can't use float or other types, this will result into

TypeError.Nested list are accessed using nested indexing.

Example.py

my_list = ['p','r','o','b','e']

Output: p

print(my_list[0]) #

Output: o

print(my_list[2]) #

Output: e

print(my_list[4])

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

Error! Only integer can be used for indexing

my_list[4.0] # Nested List

n_list = ["Happy", [2,0,1,5]]

Nested indexing #

Output: a

print(n_list[0][1])

Output: 5

print(n_list[1][3])

Negative indexing

Python allows negative indexing for its sequences. The index of -1 refers to the last item,

-2 to the second last item and so on.

Example: Script.py

my_list = ['p','r','o','b','e']

Output: e

print(my_list[-1])

Output: p

print(my_list[-5])

How to slice lists in Python?

We can access a range of items in a list by using the slicing operator (colon). my_list

= ['p','r','o','g','r','a','m','i','z']

elements 3rd to 5th

print(my_list[2:5]) #

elements beginning to 4th

print(my_list[:-5]) #

elements 6th to end

print(my_list[5:])

elements beginning to end print(my_list[:])

Slicing can be best visualized by considering the index to be between the elements as shown below.

So if we want to access a range, we need two index that will slice that portion from the list.

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

4.1.4 List Methods

Methods that are available with list object in Python programming are tabulated

below.They are accessed as list.method(). Some of the methods have already been used above.

Python List Methods

append() - Add an element to the end of the list

extend() - Add all elements of a list to the another list

insert() - Insert an item at the defined index

remove() - Removes an item from the list

pop() - Removes and returns an element at the given index

clear() - Removes all items from the list

index() - Returns the index of the first matched item

count() - Returns the count of number of items passed as an argument

https://www.programiz.com/python-programming/methods/list
https://www.programiz.com/python-programming/methods/list
https://www.programiz.com/python-programming/methods/list/append
https://www.programiz.com/python-programming/methods/list/append
https://www.programiz.com/python-programming/methods/list/append
https://www.programiz.com/python-programming/methods/list/append
https://www.programiz.com/python-programming/methods/list/append
https://www.programiz.com/python-programming/methods/list/extend
https://www.programiz.com/python-programming/methods/list/extend
https://www.programiz.com/python-programming/methods/list/extend
https://www.programiz.com/python-programming/methods/list/extend
https://www.programiz.com/python-programming/methods/list/extend
https://www.programiz.com/python-programming/methods/list/insert
https://www.programiz.com/python-programming/methods/list/insert
https://www.programiz.com/python-programming/methods/list/insert
https://www.programiz.com/python-programming/methods/list/insert
https://www.programiz.com/python-programming/methods/list/insert
https://www.programiz.com/python-programming/methods/list/remove
https://www.programiz.com/python-programming/methods/list/remove
https://www.programiz.com/python-programming/methods/list/remove
https://www.programiz.com/python-programming/methods/list/remove
https://www.programiz.com/python-programming/methods/list/remove
https://www.programiz.com/python-programming/methods/list/pop
https://www.programiz.com/python-programming/methods/list/pop
https://www.programiz.com/python-programming/methods/list/pop
https://www.programiz.com/python-programming/methods/list/pop
https://www.programiz.com/python-programming/methods/list/pop
https://www.programiz.com/python-programming/methods/list/clear
https://www.programiz.com/python-programming/methods/list/clear
https://www.programiz.com/python-programming/methods/list/clear
https://www.programiz.com/python-programming/methods/list/clear
https://www.programiz.com/python-programming/methods/list/clear
https://www.programiz.com/python-programming/methods/list/clear
https://www.programiz.com/python-programming/methods/list/clear
https://www.programiz.com/python-programming/methods/list/index
https://www.programiz.com/python-programming/methods/list/index
https://www.programiz.com/python-programming/methods/list/index
https://www.programiz.com/python-programming/methods/list/index
https://www.programiz.com/python-programming/methods/list/index
https://www.programiz.com/python-programming/methods/list/count
https://www.programiz.com/python-programming/methods/list/count
https://www.programiz.com/python-programming/methods/list/count
https://www.programiz.com/python-programming/methods/list/count
https://www.programiz.com/python-programming/methods/list/count

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

sort() - Sort items in a list in ascending order

reverse() - Reverse the order of items in the list

copy() - Returns a shallow copy of the list

Example.py my_list = [3, 8, 1, 6, 0, 8, 4]

Output: 1

print(my_list.index(8))

Output: 2 print(my_list.count(8))

my_list.sort()

Output: [0, 1, 3, 4, 6, 8, 8]

print(my_list)

my_list.reverse()

Output: [8, 8, 6, 4, 3, 1, 0] print(my_list)

append():

 This method appends / adds the pass object (v) to the existing list.

Syntax:

Example.py

list1=[1,2,3,4]

list1.append(99)

print(list1) Output:

[1, 2, 3, 4, 99]

Insert():

 This method insert the given element at the specified position.

Syntax:

Example.py

list1=[1,2,3,4]

list1.insert(1,100)

print(list1) Output:

[1, 100, 2, 3, 4]

listname.append(element)

listname. insert(position,element)

https://www.programiz.com/python-programming/methods/list/sort
https://www.programiz.com/python-programming/methods/list/sort
https://www.programiz.com/python-programming/methods/list/sort
https://www.programiz.com/python-programming/methods/list/sort
https://www.programiz.com/python-programming/methods/list/sort
https://www.programiz.com/python-programming/methods/list/reverse
https://www.programiz.com/python-programming/methods/list/reverse
https://www.programiz.com/python-programming/methods/list/reverse
https://www.programiz.com/python-programming/methods/list/reverse
https://www.programiz.com/python-programming/methods/list/reverse
https://www.programiz.com/python-programming/methods/list/copy
https://www.programiz.com/python-programming/methods/list/copy
https://www.programiz.com/python-programming/methods/list/copy
https://www.programiz.com/python-programming/methods/list/copy
https://www.programiz.com/python-programming/methods/list/copy

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

Remove():

 Removes the element from the list. If there is no element then it displays error.

Syntax:

Example.py

list1=[1,2,3,4]

list1.remove(4)

print(list1) Output:

[1, 2, 3]

Extend():

 This method appends the contents of the list.

Syntax:

Example.py

list1=[1,2,3,4]

list1.extend([10,20,30]) print(list1)

Output:

[1, 2, 3, 4, 10, 20, 30]

Sort():

 This method sorts the element either alphabetically or numerically.

Syntax:

Example.py

list1=[5,2,10,4]

list1.sort()

print(list1) Output:

[2, 4, 5, 10] Reverse():

 This method reverses the element in the list.Syntax:

listname.remove(element)

listname1.extend(listname2)

listname.sort()

listname.reverse()

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

Example.py

list1=[5,2,10,4]

list1.reverse()

print(list1) Output:

[4, 10, 2, 5]

Count():

 This method returns count of how many times elements occur in the list.

Syntax:

Example.py

list1=[5,2,10,4,3,5]

print(list1.count(5)) Output:

2

Index():

 This method returns the index value of an element.

Syntax:

Example.py

list1=[5,2,10,4,3]

print(list1.index(10)) Output:

2

Pop():

 This method removes the element from the list at the specified index. If the index value is

not specified it removes the last element from the list.

Syntax:

Example.py

list1=[5,2,10,4,3]

print(list1.pop(4))

print(list1.pop(7)) Output:

3

Traceback (most recent call last):

listname.count(element)

listname.index(element[,start[,end]]))

listname.pop(index)

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

 File "python", line 3, in <module>

IndexError: pop index out of range

Del():

Element to be deleted is mentioned using list name and index.

Syntax:

Example.py

list1=[5,2,10,4,3]

del list1[3]

print(list1) Output:

[5, 2, 10, 3]

4.1.5 List Loops

• Python are executed sequentially but branching statements are used to break the

sequential pattern.

• Python supplies two different kinds of loops,the while loop and for loop.

For loop:

 Executes a sequence of statements multiple times.

Syntax:

 Val is a variable that takes value of

the item inside the sequence on each iteration.

 Loop continues until the last item in the sequence is reached.

 For loop contains initialization & condition part, but increment and

decrement need not to be defined in python. Flowchart

dellistname[index]

for val in sequence:

Body of for

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

Example.py

 (To print square of number from 1 to 5)

for i in range(1,6):

print("The square of {0} is {1}".format(i,i**2))

Output:

The square of 1 is 1

The square of 2 is 4

The square of 3 is 9

The square of 4 is 16

The square of 5 is 25 Example.py

for letter in "Magic":

print("current letter:",letter)

Output:

current letter: M

current letter: a current

letter: g current letter:

i

current letter: c

while loop:

 It is an entry controlled loop

 It executes a block of code repeatedly till the condition becomes true.

Syntax:

statement(s)

while expression:

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

Flowchart:

example.py(To print numbers)

i=5 while i<50:

print(i)

i=i*3

Output:

5

15

45

Infinite loop

• A loop becomes infinite loop if a condition becomes FALSE. Such a loop is called as

infinite loop

• Example: client-server programming(server needs to run continuously so that client can

communicate with it) Example.py

i=1 while

i==1:

print("Chennai")

Output:

Chennai

Chennai

Chennai

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

Example.py

4.1.6 Mutability

• Mutability is the ability to change certain types of data without entirely recreating it.

• Using mutable, data types allow programs to operate quickly and efficiently.

• A list is mutable but string is not mutable (or) immutable.

• The “=” operator is used to copy a list to another variable, the list is not actually

replicated. Instead both variables point to the same list.

l=[5,6,7,8,9]

l[2]=10 print(l)

Output:

[5, 6, 10, 8, 9]

4.1.7 Aliasing

• When two identifiers refers to the same variable or value,then it is called as aliasing.

• This type of change is known as side effect. The variable one and two both refers to the

exact same list object. They are aliases for the same object.

Example.py

one=[10,20,30] two=one

print(one)

print(two)

one[2]=55

print(one)

print(two) Output:

[10, 20, 30]

[10, 20, 30]

[10, 20, 55]

[10, 20, 55]

• To prevent aliasing a new object is created and the contents of the original can be copied

to the new object. Example.py one=[10,20,30] three=[] for i in one:

 three.append(i) Output:

[10, 20, 30]

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

4.1.8 Cloning List

 It is a process of making a copy of the list without modifying the original list.

 When changes are done, it is applied only in duplicate copy and not reflected to

original copy. Example.py

def dup(l1,l2):

for i in l1: if i

in l2:

l1.remove(i)

return l1=[1,2,3,4]

l2=[1,2,5,6]

dup(l1,l2)

print("l1:",l1)

Output:

l1: [2, 3, 4]

List Parameters

 A list can also be passed as a parameter to a function.

 If changes are done, then it is notified to main program.

 The list arguments are always passed by reference only.

Example.py

def delete(t):

del t[0]

letter=['a','b','c','d']

delete(letter)

print(letter) Output:

['b', 'c', 'd']

t1=[1,2] t1.append(3)

print(t1)

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

Example.py

t3=t1+[4]

print(t3) Output:

[1, 2, 3]

[1, 2, 3, 4]

Example.py def

tail(t): return t[1:]

letter=['a','b','c','d']

print(tail(letter))

Output:

['b', 'c', 'd']

4.2 TUPLES

• A tuple consists of number of values separated by commas and enclosed within

parentheses.

• Tuples are similar to lists.

• Tuples are immutable sequences. The elements in the tuple cannot be modified.

• The difference between tuple and lists are the tuple cannot be modified like lists and

tuples use parentheses, whereas list use square brackets. Example.py fruits=(‘apple’,

‘orange’) print(fruits)

Output:

(‘apple’, ‘orange’)

4.2.1 Creating and Accessing tuple

 Tuples can be created by putting different values separated by commas and

enclosed within parenthesis. Example.py

#Tuple Example

no=(1,2,3) print(no)

#Nested Tuple

n1=(“python”,[‘list’,’in’,’tuple])

print(n1[0]) print(n2[1]) #mixed

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

tuple m1=(3,”aaa”)

nos,value=m1 print(nos)

print(value) Output:

(1,2,3) python

[‘list’,’in’,’tuple’]

3 aaa

4.2.2 Operations in tuples

 Two operators + and * is allowed in tuples. + concatenates the tuples and * repeats

the tuple elements a given number of times. Example.py no=(1,2,3) rep=(‘a’,’b’)*2

new=no+rep print(new)

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

print(rep) Output:

(1,2,3,’a’,’b’,’a’,’b’)

(‘a’,’b’,’a’,’b’)

4.2.3 Slicing and Indexing of tuples

 Slicing of tuples is similar to lists. [m:n] where m is the inclusive starting point and n

is the exclusive ending point. Example.py

t1=(1,2,3,4,(10,20,30))

print(t1[0])

print(t1[2:3])

print(t1[2:]) print(t1[-

2]) Output:

1

3

(3,4,(10,20,30))

4

4.2.4 Deleting and updating tuples

 Tuples are immutable. The elements cannot be changed. The entire tuple can be

deleted using del. Example.py

n1=(‘c’,’o’,’m’,’p’,’u’,’t’,’e’,’r’)

n1[1]=’O’ del

n1[0]

Output:

Error:’tuple’ object does not support item assignment and item deletion.

4.2.5 Tuple functions

 Functions in tuple are also similar to list data type. The methods of tuple are also similar to

list.

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

S.no Functions Description

1. len(tuple) Gives the total length of the tuple

2. max(tuple) Returns item from the tuple with max value.

3. min(tuple) Returns item from the tuple with min value.

4. tuple(seq) Converts list or string into tuple.

5. sum(tuple) Returns the sum of all elements.

6. sorted(tuple) Sorts the tuple in ascending order.

Example.py

t3=(1,2,35,4,15,6,7)

l1=[10,20,30] s1="computer"

print(len(t3)) print(max(t3))

print(min(t3))

print(tuple(l1))

print(tuple(s1))

print(sum(t3))

print(sorted(t3))

Output:

7

35

1

(10, 20, 30)

('c', 'o', 'm', 'p', 'u', 't', 'e', 'r')

70

[1, 2, 4, 6, 7, 15, 35]

4.2.6 Tuple Assignment

• Swapping of values in two variables need three statements and one temporary variable as

below. temp=a a=b b=temp

• Tuple assignment provides easiest way of swapping.The number of variables in left and

right of assignment operator must be equal. Example.py a=100 b=345 c=450 a,b=b,a

print("a=",a,"&","b=",b) a,b,c=c,a,b

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

print("a=",a,"&","b=",b,"c=",c) Output:

a= 345 & b= 100 a= 450

& b= 345 c= 100

4.2.7 Tuple with return value(Functions can return tuples)

Example.py def

swap(a,b,c):

returnc,b,a

a=100 b=345

c=765

print("a,b,c:",a,",",b,",",c)

a,b,c=swap(a,b,c)

print("a,b,c:",a,",",b,",",c) Output:

a,b,c: 100 , 345 , 765 a,b,c:

765 , 345 , 100

4.3 ADVANCED LIST PROCESSING: LIST COMPREHENSION

• List comprehension is used to construct lists in an easy and natural way.

• It create a list with a subset of elements from another list by applying condition.

• The list comprehension makes code simpler and efficient.

• The execution is much faster than for loop.

Example.py

x=[i for i in range(10)] print(x)

x1=[i for i in range(10) if i%2==0]

print(x1) x2=[i*2 for i in

range(10)] print(x2)

vowels=('a','e','i','o','u')

w="hello" x3=[ch for ch in w if ch

in vowels] print(x3)

Output:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

[0, 2, 4, 6, 8]

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

['e', 'o']

4.4 DICTIONARIES

• Dictionary is one of the compound data type like string, list and tuple.

• In dictionary the index can be immutable data type.

• It is a set of zero or more ordered pairs(key, value) such that:

o The value can be any type.

o Each key may occur only once in the dictionary o No key may be mutable. A key may

not be a list or tuple or dictionary and so on.

• A dictionary is set of pairs of value with each pair containing a key and an item and is enclosed in

curly brackets.

Example:

dict={} #empty dictionary d1={1:'fruit',2:'vegetables',3:'cereals'}

4.4.1 Creation and Accessing dictionary

• There are two ways to create dictionaries.

o It is created by specifying the key and value separated by a colon(:) and the elements

separated by commas and entire set of elements must be enclosed by curly braces.

o dict() constructor that uses a sequence to create dictionary.

Example.py

d1={1:'fruit',2:'vegetables',3:'cereals'}

d2=dict({'name':'aa','age':40})

print(d1[1]) print(d2) Output: fruit

{'name': 'aa', 'age': 40}

4.4.2 Deletion of elements

• The elements in the dictionary can be deleted by using del statements.

• The entire dictionary can be deleted by specifying the dictionary variable name.

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

Example.py del d1[1]#remove

entry with key '1' print(d1)

d1.clear()#remove all entries in dict

print(d1) Output:

{2: 'vegetables', 3: 'cereals'}

{}

4.4.3 Updating elements

• In dictionary the keys are always immutable.

• The values are mutable that can be modified. New-key value pair can be inserted or deleted

from the dictionary. Example.py

d3={'name':'abc','dept':'ece'}

d3['name']='xxxx' print(d3)

Output:

{'name': 'xxxx', 'dept': 'ece'}

4.4.4 Dictionary methods

 The methods are accessed as dictionary variable. Method name()

S.No Method

Name

Syntax Description

1. Clear dict.clear() Removes all elements in dictionary

2. Copy dict.copy() Returns a shallow copy(alias) of the dictionary

3.
Fromkeys dict.fromkeys(seq,value) Create a new dictionary with keys from seq and

value.

4.
Get dict.get(key[,value]) For key K,returns the value or default if key

not in dictionary

5. Items dict.items() Returns a list of(key,value) tuple pairs

6. keys dict.keys() Returns a list of dictionary keys

7.
Pop Dict.pop(key[,default]) Remove element with key K and return its

value. Returns default id K is not found.

8.
Popitem dict.popitem() Removes and return element(key,value) from

the last

9.
Setdefault dict.setdefaule(key[,default

value])

Set value for key K to default if key is not

already

10 . Update dict.update([other]) Adds dictionary D’s key – value pairs

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

11 . values dict.values() Returns list of values.

Example.py h1={'name':'abc','sub':['maths','pspp','chemisty'],1:[100,200,300]}

#copy method temp=h1.copy() print("copy of dict",temp)

#fromkeys method print("fromkeys method in

dict",h1.fromkeys(('dob','age'),10))

#get method print("get method in

dict",h1.get(1,'NA')) print("get method in

dict",h1.get('age','NA'))

#items method print("items in

dict",h1.items())

#keys method print("keys in

dict",h1.keys()) #pop method print("pop

method in dict",h1.pop('name'))

#popitem method print("popitem method in

dict",h1.popitem())

#set default method print("set default method in

dict",h1.setdefault('age',20))

#update method d={1:"one"}

d2={'name':'xxx'} d.update(d2)

print("update method in dict",d)

#values method print("values in

dict",h1.values())

#clear method h1.clear()

print("clear method in dict",h1) Output:

copy of dict {'name': 'abc', 'sub': ['maths', 'pspp', 'chemisty'], 1: [100, 200, 300]}

fromkeys method in dict {'dob': 10, 'age': 10} get method in dict [100, 200,

300] get method in dict NA

items in dictdict_items([('name', 'abc'), ('sub', ['maths', 'pspp', 'chemisty']), (1, [100, 200, 300])])

keys in dictdict_keys(['name', 'sub', 1]) pop method in dictabc popitem method in dict (1, [100,

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

200, 300]) set default method in dict 20 update method in dict {1: 'one', 'name': 'xxx'} values in

dictdict_values([['maths', 'pspp', 'chemisty'], 20]) clear method in dict {}

4.4.5 Dictionary functions

S.No Function

Name

Syntax Description

1. Length len(dict) Gives the number of elements in dictionary.

2. string str(dict) Produce a printable string representation of a dictionary

3. Type type(variable) Returns a type of variable passed

4. Del del dict(k) Deletes the element with key K from dict dictionary

Example.py

h1={'name':'abc','sub':['maths','pspp','chemisty']}

print("length of dict is:",len(h1)) print("string

representation of dict is:",str(h1)) print("type of

variable of dictis:",type(h1)) del h1['name']

print("deletion of element of dict is:",h1)

Output:

length of dict is: 2 string representation of dict is: {'name': 'abc', 'sub': ['maths',

'pspp', 'chemisty']} type of variable of dict is: <class 'dict'> deletion of element

of dict is: {'sub': ['maths', 'pspp', 'chemisty']}

Difference between List,Tuples and Dictionary

S.No List Tuple Dictionary

1. A list is mutable A tuple is immutable A dictionary is mutable

2. Dynamic Fixed Values can be of any type and

repeat but keys must be

immutable

3. Enclosed in square

brackets [] and their

elements and size can be

changed

Enclosed in parenthesis () and

cannot be updated
Enclosed in curly braces { }

and consists of key,value

4. Homogenous Heterogenous Homogenous

5. Eg: l1=[10,20] l1=(10,20) d1=(1:”a”,2:”b”)

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

6. Access: l1[0] l1[0] d1[1]

7. Can contain duplicate

elements

Can contain duplicate

elements. Faster when

compared to lists

Can contain duplicate elements

but cannot contain duplicate keys

8. Slicing can be done Slicing can be done Slicing cannot be done

9. List is used if a collection

of data that does not need

random access. Data can

be modified frequently

Tuple can be used when data

cannot be changed. Tuple is

used in combination with a

dictionary (ie)tuple must

represent a key

It is used in logical association

between key value pair. Data is

being modified constantly.

4.5 ILLUSTRATIVE PROGRAMS

Sorting:

• Sorting is the process of arranging elements in the list according to their

values in ascending (or) descending order.

• A sorted list is called an ordered list. The types of sorting are o Selection

sort o Insertion sort o Merge sort o Quick sort o Bubble sort

4.5.1 Selection sort

• Selection sort makes only one exchange for every pass through the list. In this selection sort

looks for either largest (or) smallest value as it makes a pass and after completing the pass,

places it in proper location.

• After the first pass, the smallest item is in the correct place. After the second pass, the next

smallest is in place

• The iteration is repeated for (n-1) items.

• The time complexity of selection sort is (O(n2)).

Working of selection sort:Intial list

16 19 11 15 10 12 14

 First iteration

16 19 11 15 10 12 14

10 19 11 15 16 12 14

Second iteration

10 19 11 15 16 12 14

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

10 11 19 15 16 12 14

Third iteration

10 11 19 15 16 12 14

10 11 12 15 16 19 14

Fourth iteration

10 11 12 15 16 19 14

10 11 12 14 16 19 15

Fifth iteration

10 11 12 14 16 19 15

10 11 12 14 15 19 16

Sixth iteration

10 11 12 14 15 19 16

10 11 12 14 15 16 19

Final list

10 11 12 14 15 16 19

Example.py

print("---------------------------")

print("Selection Sort") print("-------------

-------------") a = [44, 22, 11, 55, 33]

print("\nThe unsorted elements are : ", a)

i = 0 while (i < len(a)):

 #smallest element in the sublist

smallest = min(a [i :])

 #index of smallest element

index_of_smallest = a.index(smallest)

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

 #swapping

 (a[i], a[index_of_smallest])= (a[index_of_smallest], a[i])

i = i+1

print ("\nThe sorted list is :", a) Output:

Selection Sort

The unsorted elements are :

[44, 22, 11, 55, 33] The

sorted list is :

 [11, 22, 33, 44, 55]

4.5.2 Insertion sort

• Insertion sort is a sorting algorithm in which the elements are transferred one at a time to

the right position.

• It is suited for sorting small set of data, through which new elements can be inserted into a

sorted sequence.

Working of Insertion sort:

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

Example.py

print("---------------------------") print("Insertion Sort")

print("--------------------------") def insertionSort(A): for i

in range(1,len(A)): current_value = A[i] position

=i while(position > 0 and A[position - 1] >

current_value):

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

 A[position] = A[position - 1]

position = position- 1

A[position] = current_value A =

[44, 22, 11, 55, 33] print("\nThe unsorted

elements are : ", A) insertionSort(A)

print ("\nThe sorted list is :", A) Output:

Insertion Sort

The unsorted elements are : [44, 22, 11, 55, 33]

The sorted list is : [11, 22, 33, 44, 55]

4.5.3 Merge sort

• Merge sort use divide and conquer strategy to improve the performance of sorting algorithms. It is

a recursive algorithm that continually splits a list into half.

• Merging is the process of taking two smaller sorted lists and combining them together into a

single sorted new list.

Working of Merge sort:

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

Example.py

print("---------------------------") print("Merge Sort")

print("--------------------------") def mergeSort(nlist):

print("Splitting : ",nlist) if (len(nlist) > 1):

mid = len(nlist)//2 left_half = nlist [: mid]

right_half = nlist [mid :] mergeSort(left_half)

mergeSort(right_half) i = j = k = 0

while (i < len(left_half) and j < len(right_half)):

if(left_half [i] < right_half [j]):

 nlist [k] = left_half [i]

i = i + 1 else:

 nlist[k] = right_half [j]

j = j + 1 k = k + 1

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

 while (i < len(left_half)):

nlist [k] = left_half [i]

 i

= i + 1

k = k + 1

 while(j < len(right_half)):

nlist [k] = right_half [j] j

= j + 1 k = k + 1

 print("Merging : ",nlist) nlist = [44,

22, 11, 55, 33] print("\nThe unsorted

elements are :" ,nlist) mergeSort(nlist)

print ("\nThe sorted list is :", nlist)

Output:

Merge Sort

The unsorted elements are : [44, 22, 11, 55, 33]

Splitting : [44, 22, 11, 55, 33]

Splitting : [44, 22]

Splitting : [44]

Splitting : [22]

Merging : [22, 44]

Splitting : [11, 55, 33]

Splitting : [11]

Splitting : [55, 33]

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

Splitting : [55]

Splitting : [33]

Merging : [33, 55]

Merging : [11, 33, 55]

Merging : [11, 22, 33, 44, 55]

The sorted list is : [11, 22, 33, 44, 55]

4.5.4 Histogram

• A graphical representation similar to a bar chart in structure, that organizes a group of data

points into user specified ranges.

• The histogram condenses a data series into an easily interpreted visual by taking many data

points and grouping them into logical ranges of values or bins.

Steps involved in constructing the histogram:

1. To construct a histogram, the first step is to identify the range of values.

2. Divide the entire range of values into a series of intervals

3. Count how many values fall into each interval.

4. The range of values is usually specified as consecutive non-overlapping intervals of a variable.

5. The range of values must be adjacent and are often(but not required to be) of equal size.

Example.py def

histogram(items):

for n in items:

output=''

times=n

while(times>0):

output+='*'

times=times-1

print(output)

histogram([5,3,8,4,6,10])

GE8151-PROBLEM SOLVING AND PYTHON PROGRAMMING DEPT OF CSE

Output: *****
