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UNIT V CASE STUDY  
Linux System - Design Principles, Kernel Modules, Process Management, Scheduling, Memory Management, 

Input-Output Management, File System, Inter-process Communication; Mobile OS - iOS and Android - 

Architecture and SDK Framework, Media Layer, Services Layer, Core OS Layer, File System. 

 

Linux System  
 Linux kernel forms the core of the Linux project, but other components make up a complete Linux 

operating system. Whereas the Linux kernel is composed entirely of code written from scratch 
specifically for the Linux project, much of the supporting software that makes up the Linux system is 
not exclusive to Linux but is common to a number of UNIX-like operating systems.

 In particular, Linux uses many tools developed as part of Berkeley’s BSD operating system, MIT’s X 
Window System, and the Free Software Foundation’s GNU project.

 This sharing of tools has worked in both directions.

 The main system libraries of Linux were originated by the GNU project, but the Linux community 
greatly improved the libraries by addressing omissions, inefficiencies, and bugs. Other components, 
such as the GNU C compiler (gcc), were already of sufficiently high quality to be used directly in 
Linux.

 The network administration tools under Linux were derived from code first developed for 4.3 BSD, but 
more recent BSD derivatives, such as FreeBSD, have borrowed code from Linux in return. Examples 
of this sharing include the Intel floating-point-emulation math library and the PC sound-hardware 
device drivers.

 The Linux system as a whole is maintained by a loose network of developers collaborating over the 
Internet, with small groups or individuals having responsibility for maintaining the integrity of 
specific components.

 A small number of public Internet file-transfer-protocol (FTP) archive sites act as de facto standard 
repositories for these components.

 The File System Hierarchy Standard document is also maintained by the Linux community as a means 
of ensuring compatibility across the various system components. This standard specifies the overall 
layout of a standard Linux file system; it determines under which directory names configuration files, 
libraries, system binaries, and run-time data files should be stored.

 
 Linux distributions, include much more than just the basic Linux system. They typically include extra 

system-installation and management utilities, as well as precompiled and ready-to-install packages of 
many of the common UNIX tools, such as news servers, web browsers, text-processing and editing 
tools, and even games.

 The first distributions managed these packages by simply providing a means of unpacking all the files 
into the appropriate places.

 One of the important contributions of modern distributions, however, is advanced package management.

 Today’s Linux distributions include a package-tracking database that allows packages to be installed, 
upgraded, or removed painlessly.

 The SLS distribution, dating back to the early days of Linux, was the first collection of Linux packages 
that was recognizable as a complete distribution. Although it could be installed as a single entity, SLS 
lacked the package-management tools now expected of Linux distributions.

 The Slackware distribution represented a great improvement in overall quality, even though it also had 
poor package management. In fact, it is still one of the most widely installed distributions in the 
Linux community.

 Since Slackware’s release, many commercial and noncommercial Linux distributions have become 
available.

Red Hat and Debian are particularly pop-ular distributions; the first comes from a commercial Linux 
support company and the second from the free-software Linux community. 

 Other commercially supported versions of Linux include distributions from Canonical and SuSE, and 
others too numerous to list here.

 There are too many Linux distributions in circulation for us to list all of them here. The variety of 
distributions does not prevent Linux distributions from being compatible, however.

 The RPM package file format is used, or at least understood, by the majority of distributions, and 
commercial applications distributed in this format can be installed and run on any distribution that 
can accept RPM files. 
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Linux Licensing  
 The Linux kernel is distributed under version 2.0 of the GNU General Public License (GPL), the terms of 

which are set out by the Free Software Foundation.

 Linux is not public-domain software. Public domain implies that the authors have waived copyright 
rights in the software, but copyright rights in Linux code are still held by the code’s various authors. 
Linux is free software, however, in the sense that people can copy it, modify it, use it in any manner 
they want, and give away (or sell) their own copies.

 The main implication of Linux’s licensing terms is that nobody using Linux, or creating a derivative of 
Linux (a legitimate exercise), can distribute the derivative without including the source code.

 Software released under the GPL cannot be redistributed as a binary-only product. If you release software 
that includes any components covered by the GPL, then, under the GPL, you must

 make source code available alongside any binary distributions. (This restriction does not prohibit making 
or even selling binary software distributions, as long as anybody who receives binaries is also given 
the opportunity to get the originating source code for a reasonable distribution charge.)

 

Design Principles  
 In its overall design, Linux resembles other traditional, nonmicrokernel UNIX implementations. It is a 

multiuser, preemptively multitasking system with a full set of UNIX-compatible tools.

 Linux’s file system adheres to traditional UNIX semantics, and the standard UNIX networking model is 
fully implemented.

 The internal details of Linux’s design have been influenced heavily by the history of this operating 

system’s development.

 Although Linux runs on a wide variety of platforms, it was originally developed exclusively on PC 
architecture. A great deal of that early devel-opment was carried out by individual enthusiasts rather 
than by well-funded development or research facilities, so from the start Linux attempted to squeeze 
as much functionality as possible from limited resources.

 Today, Linux can run happily on a multiprocessor machine with many gigabytes of main memory and 
many terabytes of disk space, but it is still capable of operating usefully in under 16 MB of RAM.

 As PCs became more powerful and as memory and hard disks became cheaper, the original, minimalist 
Linux kernels grew to implement more UNIX functionality.

 Speed and efficiency are still important design goals, but much recent and current work on Linux has 
concentrated on a third major design goal: standardization. One of the prices paid for the diversity of 
UNIX implementations currently available is that source code written for one may not necessarily 
compile or run correctly on another.

 Even when the same system calls are present on two different UNIX systems, they do not 
necessarily behave in exactly the same way.

 The POSIX standards comprise a set of specifications for different aspects of operating-
system behavior. There are POSIX documents for common operating-system 
functionality and for extensions such as process threads and real-time operations.

 Linux is designed to comply with the relevant POSIX documents, and at least two Linux 
distributions have achieved official POSIX certification.

 Because it gives standard interfaces to both the programmer and the user, Linux presents 
few surprises to anybody familiar with UNIX. We do not detail these interfaces here. 
The sections on the programmer interface and user interface of BSD apply equally well 
to Linux.

 By default, however, the Linux programming interface adheres to SVR4 UNIX semantics, 
rather than to BSD behavior. A separate set of libraries is available to implement BSD 
semantics in places where the two behaviors differ significantly. 

  
 Many other standards exist in the UNIX world, but full certification of Linux with respect 

to these standards is sometimes slowed because certification is often available only for 
a fee, and the expense involved in certifying an operating system’s compliance with 
most standards is substantial. 

  
 However, supporting a wide base of applications is important for any operating system, so 

implementation of standards is a major goal for Linux development, even if the 
implementation is not formally certified. 

  
  
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 In addition to the basic POSIX standard, Linux currently supports the POSIX threading extensions 

Pthreads and a subset of the POSIX extensions for real-time process control.

 
Components of a Linux System 
 

 The Linux system is composed of three main bodies of code, in line with most traditional UNIX 

implementations:

 Kernel. The kernel is responsible for maintaining all the important abstractions of the operating 
system, including such things as virtual memory and processes.


 System libraries. The system libraries define a standard set of functions through which 

applications can interact with the kernel. These functions implement much of the operating-
system functionality that does not need the full privileges of kernel code. The most important 
system library is the C library, known as libc. In addition to providing the standard C library, libc 
implements the user mode side of the Linux system call interface, as well as other critical system-
level interfaces.


 System utilities. The system utilities are programs that perform indi-vidual, specialized 

management tasks. Some system utilities are invoked just once to initialize and configure some 
aspect of the system. Others — known as daemons in UNIX terminology — run permanently, 
handling such tasks as responding to incoming network connections, accepting logon requests 
from terminals, and updating log files.


 Figure 5.1 illustrates the various components that make up a full Linux system.

 The most important distinction here is between the kernel and everything else. All the kernel code 
executes in the processor’s privileged mode with full access to all the physical resources of the 
computer.

 Linux refers to this privileged mode as kernel mode. Under Linux, no user code is built into the kernel. 
Any operating-system-support code that does not need to run in kernel mode is placed into the 
system libraries and runs in user mode.

 Unlike kernel mode, user mode has access only to a controlled subset of the system’s resources.  
System Management User Processes User Utility Compilers 

Programs  Programs  

    

System Shared Libraries 
 

Linux Kernel Modules 
 

Loaded kernel modules 
 

Fig:5.1 Components of the Linux system 

 

 Although various modern operating systems have adopted a message-passing architecture for their kernel 
internals, Linux retains UNIX’s historical model: the kernel is created as a single, monolithic binary. 
The main reason is performance.

 Because all kernel code and data structures are kept in a single address space, no context switches are 
necessary when a process calls an operating-system function or when a hardware interrupt is 
delivered. More-over, the kernel can pass data and make requests between various subsystems using 
relatively cheap C function invocation and not more complicated inter-process communication (IPC).

 This single address space contains not only the core scheduling and virtual memory code but all kernel 
code, including all device drivers, file systems, and networking code.

 Even though all the kernel components share this same melting pot, there is still room for modularity.

 In the same way that user applications can load shared libraries at run time to pull in a needed piece of 
code, so the Linux kernel can load (and unload) modules dynamically at run time. 
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 The kernel does not need to know in advance which modules may be loaded they are truly independent 

loadable components.

 The Linux kernel forms the core of the Linux operating system. It provides all the functionality necessary 
to run processes, and it provides system services to give arbitrated and protected access to hardware 
resources.

 The kernel implements all the features required to qualify as an operating system. On its own, however, 
the operating system provided by the Linux kernel is not a complete UNIX system. It lacks much of 
the functionality and behavior of UNIX, and the features that it does provide are not necessarily in the 
format in which a UNIX application expects them to appear.

 The operating-system interface visible to running applications is not maintained directly by the kernel. 
Rather, applications make calls to the system libraries, which in turn call the operating-system 
services as necessary.

 The system libraries provide many types of functionality. At the simplest level, they allow applications to 
make system calls to the Linux kernel. Making a system call involves transferring control from 
unprivileged user mode to privileged kernel mode; the details of this transfer vary from architecture to 
architecture.

 The libraries take care of collecting the system-call arguments and, if necessary, arranging those 
arguments in the special form necessary to make the system call.

 The libraries may also provide more complex versions of the basic system calls. For example, the C 
language’s buffered file-handling functions are all implemented in the system libraries, providing 
more advanced control of file I/O than the basic kernel system calls.

 The libraries also provide routines that do not correspond to system calls at all, such as sorting 
algorithms, mathematical functions, and string-manipulation routines. All the functions necessary to 
support the running of UNIX or POSIX applications are implemented in the system libraries.



 The Linux system includes a wide variety of user-mode programs both system utilities and user utilities. 
The system utilities include all the programs necessary to initialize and then administer the system, 
such as those to set up networking interfaces and to add and remove users from the system.

 User utilities are also necessary to the basic operation of the system but do not require elevated privileges 
to run. They include simple file-management utilities such as those to copy files, create directories, 
and edit text files.

 One of the most important user utilities is the shell, the standard command-line interface on UNIX 
systems. Linux supports many shells; the most common is the bourne-Again shell (bash).

 
Kernel Modules  

 The Linux kernel has the ability to load and unload arbitrary sections of kernel code on demand. These 
loadable kernel modules run in privileged kernel mode and as a consequence have full access to all 
the hardware capabilities of the machine on which they run.

 In theory, there is no restriction on what a kernel module is allowed to do. Among other things, a kernel 
module can implement a device driver, a file system, or a networking protocol.

 Kernel modules are convenient for several reasons. Linux’s source code is free, so anybody wanting to 
write kernel code is able to compile a modified kernel and to reboot into that new functionality. 
However, recompiling, relinking, and reloading the entire kernel is a cumbersome cycle to undertake 
when you are developing a new driver.

 If you use kernel modules, you do not have to make a new kernel to test a new driver the driver can be 
compiled on its own and loaded into the already running kernel. Of course, once a new driver is 
written, it can be distributed as a module so that other users can benefit from it without having to 
rebuild their kernels.

 This latter point has another implication. Because it is covered by the GPL license, the Linux kernel 
cannot be released with proprietary components added to it unless those new components are also 
released under the GPL and the source code for them is made available on demand.

 The kernel’s module interface allows third parties to write and distribute, on their own terms, device 
drivers or file systems that could not be distributed under the GPL.

 Kernel modules allow a Linux system to be set up with a standard minimal kernel, without any extra 
device drivers built in.

 Any device drivers that the user needs can be either loaded explicitly by the system at startup or loaded 
automatically by the system on demand and unloaded when not in use.


  
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 For example, a mouse driver can be loaded when a USB mouse is plugged into the system and unloaded 

when the mouse is unplugged.

The module support under Linux has four components: 

 The module-management system allows modules to be loaded into memory and to 
communicate with the rest of the kernel.

 The module loader and unloader, which are user-mode utilities, work with the module-
management system to load a module into memory.

 The driver-registration system allows modules to tell the rest of the kernel that a new driver 
has become available.

 Aconflict-resolution mechanism allows different device drivers to reserve hardware resources 
and to protect those resources from accidental use by another driver.

 
 Loading a module requires more than just loading its binary contents into kernel memory. The system 

must also make sure that any references the module makes to kernel symbols or entry points are 
updated to point to the correct locations in the kernel’s address space

 Linux deals with this reference updating by splitting the job of module loading into two separate 
sections: the management of sections of module code in kernel memory and the handling of symbols 
that modules are allowed to reference.

 Linux maintains an internal symbol table in the kernel. This symbol table does not contain the full set of 
symbols defined in the kernel during the latter’s compilation; rather, a symbol must be explicitly 
exported.

 The set of exported symbols constitutes a well-defined interface by which a module can interact with the 
kernel.Although exporting symbols from a kernel function requires an explicit request by the 
programmer, no special effort is needed to import those symbols into a module. A module writer just 
uses the standard external linking of the C language.

 Any external symbols referenced by the module but not declared by it are simply marked as unresolved in 
the final module binary produced by the compiler. When a module is to be loaded into the kernel, a 
system utility first scans the module for these unresolved references.

 All symbols that still need to be resolved are looked up in the kernel’s symbol table, and the correct 
addresses of those symbols in the currently running kernel are substituted into the module’s code.

 Only then is the module passed to the kernel for loading. If the system utility cannot resolve all 
references in the module by looking them up in the kernel’s symbol table, then the module is rejected.

 The loading of the module is performed in two stages.

 First, the module-loader utility asks the kernel to reserve a continuous area of virtual kernel memory for 
the module. The kernel returns the address of the memory allocated, and the loader utility can use this 
address to relocate the module’s machine code to the correct loading address.

 A second system call then passes the module, plus any symbol table that the new module wants to export, 
to the kernel. The module itself is now copied verbatim into the previously allocated space, and the 
kernel’s symbol table is updated with the new symbols for possible use by other modules not yet 
loaded.

 The final module-management component is the module requester. The kernel defines a communication 
interface to which a module-management program can connect.

 With this connection established, the kernel will inform the management process whenever a process 
requests a device driver, file system, or network service that is not currently loaded and will give the 
manager the opportunity to load that service.

 The original service request will complete once the module is loaded. The manager process regularly 
queries the kernel to see whether a dynamically loaded module is still in use and unloads that module 
when it is no longer actively needed.

 

Driver Registration  
 Once a module is loaded, it remains no more than an isolated region of memory until it lets the rest of the 

kernel know what new functionality it provides.

 The kernel maintains dynamic tables of all known drivers and provides a set of routines to allow drivers 
to be added to or removed from these tables at any time. 
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 The kernel makes sure that it calls a module’s startup routine when that module is loaded and calls the 

module’s cleanup routine before that module is unloaded. These routines are responsible for 
registering the module’s functionality.

 A module may register many types of functionality; it is not limited to only one type.

 For example, a device driver might want to register two separate mechanisms for accessing the device. 
Registration tables include, among others, the following items:

 Device drivers. These drivers include character devices (such as printers, terminals, and mice), 
block devices (including all disk drives), and network interface devices.


 File systems. The file system may be anything that implements Linux’s virtual file system calling 

routines. It might implement a format for storing files on a disk, but it might equally well be a 
network file system, such as NFS, or a virtual file system whose contents are generated on 
demand, such as Linux’s /proc file system.

 Network protocols. A module may implement an entire networking protocol, such as TCP or 
simply a new set of packet-filtering rules for a network firewall.

 Binary format. This format specifies a way of recognizing, loading, and executing a 
new type of executable file.

 

Conflict Resolution  
 Commercial UNIX implementations are usually sold to run on a vendor’s own hardware. One advantage 

of a single-supplier solution is that the software vendor has a good idea about what hardware 
configurations are possible.

 PC hardware, however, comes in a vast number of configurations, with large numbers of possible drivers 
for devices such as network cards and video display adapters.

 The problem of managing the hardware configuration becomes more severe when modular device drivers 
are supported, since the currently active set of devices becomes dynamically variable.

 Linux provides a central conflict-resolution mechanism to help arbitrate access to certain hardware 
resources. Its aims are as follows:

 To prevent modules from clashing over access to hardware resources
 To prevent autoprobes — device-driver probes that auto-detect device configuration — from 

interfering with existing device drivers
 To resolve conflicts among multiple drivers trying to access the same hardware — as, for 

example, when both the parallel printer driver and the parallel line IP (PLIP) network driver try to 
talk to the parallel port.

 To these ends, the kernel maintains lists of allocated hardware resources. The PC has a limited 
number of possible I/O ports (addresses in its hardware I/O address space), interrupt lines, and 
DMA channels. When any device driver wants to access such a resource, it is expected to reserve 
the resource with. 

Process Management  
 A process is the basic context in which all user-requested activity is serviced within the operating system. 
To be compatible with other UNIX systems, Linux must use a process model similar to those of other 
versions of UNIX.

 Linux operates differently from UNIX in a few key places, however. In this section, we review the 
traditional

UNIX process model and introduce Linux’s threading model. 
 

The fork() and exec() Process Model  
 The basic principle of UNIX process management is to separate into two steps two operations that are 

usually combined into one: the creation of a new process and the running of a new program. 
  
 A new process is created by the fork() system call, and a new program is run after a call to exec(). These 

are two distinctly separate functions. We can create a new process with fork() without running a new 
program the new subprocess simply continues to execute exactly the same program, at exactly the 
same point, that the first (parent) process was running. 

  
 In the same way, running a new program does not require that a new process be created first. Any process 

may call exec() at any time. A new binary object is loaded into the process’s address space and the 
new executable starts executing in the context of the existing process.  
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 This model has the advantage of great simplicity. It is not necessary to specify every detail of the 

environment of a new program in the system call that runs that program.

 The new program simply runs in its existing environment. If a parent process wishes to modify the 
environment in which a new program is to be run, it can fork and then, still running the original 
executable in a child process, make any system calls it requires to modify that child process before 
finally executing the new program.

 Under UNIX, then, a process encompasses all the information that the operating system must maintain to 
track the context of a single execution of a single program.

 Under Linux, we can break down this context into a number of specific sections. Broadly, process 
properties fall into three groups: the process identity, environment, and context.

 
Process Identity 

 A process identity consists mainly of the following items:

 Process ID (PID). Each process has a unique identifier. The PID is used to specify the process to 
the operating system when an application makes a system call to signal, modify, or wait for the 
process. Additional identifiers associate the process with a process group (typically, a tree of 
processes forked by a single user command) and login session.

 Credentials. Each process must have an associated user ID and one or more group IDs (user groups 
are discussed in Section 11.6.2) that determine the rights of a process to access system resources 
and files.

 Personality. Process personalities are not traditionally found on UNIX systems, but under Linux 
each process has an associated personality identifier that can slightly modify the semantics of 
certain system calls. Personalities are primarily used by emulation libraries to request that system 
calls be compatible with certain varieties of UNIX.

 Namespace. Each process is associated with a specific view of the file-system hierarchy, called its 

namespace. Most processes share a common namespace and thus operate on a shared file-system 

hierarchy. Processes and their children can, however, have different namespaces, each with a 
unique file-system hierarchy — their own root directory and set of mounted file systems.


 Most of these identifiers are under the limited control of the process itself. The process group and session 
identifiers can be changed if the process wants to start a new group or session. Its credentials can be 
changed, subject to appropriate security checks. However, the primary PID of a process is unchangeable 
and uniquely identifies that process until termination.

 

Process Environment  
A process’s environment is inherited from its parent and is composed of two null-terminated vectors: the 

argument vector and the environment vector. The argument vector simply lists the command-line arguments 

used to invoke the running program; it conventionally starts with the name of the program itself. The 
environment vector is a list of “NAME=VALUE” pairs that associates named environment variables with 

arbitrary textual values. The environment is not held in kernel memory but is stored in the process’s own 
user-mode address space as the first datum at the top of the process’s stack.  

The argument and environment vectors are not altered when a new process is created. The new child 
process will inherit the environment of its parent. However, a completely new environment is set up when a 
new program is invoked. On calling exec(), a process must supply the environment for the new program. The 
kernel passes these environment variables to the next program, replacing the process’s current environment. 
The kernel otherwise leaves the environment and command-line vectors alone — their interpretation is left 
entirely to the user-mode libraries and applications.  

The passing of environment variables from one process to the next and the inheriting of these variables 

by the children of a process provide flexible ways to pass information to components of the user-mode 

system software. Various important environment variables have conventional meanings to related parts of the 

system software. For example, the TERM variable is set up to name the type of terminal connected to a 

user’s login session. Many programs use this variable to determine how to perform operations on the user’s 

display, such as moving the cursor and scrolling a region of text. Programs with multilingual support use the 

LANG variable to determine the language in which to display system messages for programs that include 

multilingual support.  
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The environment-variable mechanism custom-tailors the operating system on a per-process basis. Users 
can choose their own languages or select their own editors independently of one another. 
 

Process Context 
 

The process identity and environment properties are usually set up when a process is created and not 

changed until that process exits. A process may choose to change some aspects of its identity if it needs to do 
so, or it may alter its environment. In contrast, process context is the state of the running program at any one 

time; it changes constantly. Process context includes the following parts:  
Scheduling context. The most important part of the process context is its scheduling context — the 

information that the scheduler needs to suspend and restart the process. This information includes saved 
copies of all the process’s registers. Floating-point registers are stored separately and are restored only when 
needed. Thus, processes that do not use floating-point arithmetic do not incur the overhead of saving that 
state. The scheduling context also includes information about scheduling priority and about any outstanding 
signals waiting to be delivered to the process. A key part of the scheduling context is the process’s kernel 
stack, a separate area of kernel memory reserved for use by kernel-mode code. Both system calls and 
interrupts that occur while the process is executing will use this stack. 
 
Accounting. The kernel maintains accounting information about the resources currently being consumed by 
each process and the total resources consumed by the process in its entire lifetime so far. 
 
File table. The file table is an array of pointers to kernel file structures representing open files. When making 
file-I/O system calls, processes refer to files by an integer, known as a file descriptor (fd), that the kernel 
uses to index into this table. 
 
File-system context. Whereas the file table lists the existing open files, the file-system context applies to 

requests to open new files. The file-system context includes the process’s root directory, current working 
directory, and namespace. 
Signal-handler table. UNIX systems can deliver asynchronous signals to a process in response to various 
external events. The signal-handler table defines the action to take in response to a specific signal. Valid 
actions include ignoring the signal, terminating the process, and invoking a routine in the process’s address 
space. 
 
Virtual memory context. The virtual memory context describes the full contents of a process’s private 

address space; Linux provides the fork() system call, which duplicates a process without loading a new 
executable image. Linux also provides the ability to create threads via the clone() system call. Linux does not 
distinguish between processes and threads, however. In fact, Linux generally uses the term task — rather 
than process or thread — when referring to a flow of control within a program. The clone() system call 
behaves identically to fork(), except that it accepts as arguments a set of flags that dictate what resources are 
shared between the parent and child (whereas a process created with fork() shares no resources with its 
parent). The flags include: 

flag Meaning 

CLONE_FS File-system information is shared 

CLONE_VM The same memory space is shared 

CLONE_SIGHAND Signal Handlers are shared 

CLONE_FILES The set of open files is shared  
 
Thus, if clone() is passed the flags CLONE FS, CLONE VM, CLONE SIGHAND, and CLONE FILES, the 
parent and child tasks will share the same file-system information (such as the current working directory), the 
same memory space, the same signal handlers, and the same set of open files. Using clone() in this fashion is 
equivalent to creating a thread in other systems, since the parent task shares most of its resources with its 
child task. If none of these flags is set when clone() is invoked, however, the associated resources are not 
shared, resulting in functionality similar to that of the fork() system call.   

The lack of distinction between processes and threads is possible because Linux does not hold a 
process’s entire context within the main process data structure. Rather, it holds the context within 
independent subcontexts. Thus, process’s file-system context, file-descriptor table, signal-handler table, and 
virtual memory context are held in   
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separate data structures. The process data structure simply contains pointers to these other structures, so any number of 
processes can easily share a subcontext by pointing to the same subcontext and incrementing a reference count.  

The arguments to the clone() system call tell it which subcontexts to copy and which to share. The new process 
is always given a new identity and a new scheduling context — these are the essentials of a Linux process. According 
to the arguments passed, however, the kernel may either create new subcontext data structures initialized so as to be 
copies of the parent’s or set up the new process to use the same subcontext data structures being used by the parent. 
The fork() system call is nothing more than a special case of clone() that copies all subcontexts, sharing none. 

 

Scheduling  
Scheduling is the job of allocating CPU time to different tasks within an operating system. Linux, like all 

UNIX systems, supports preemptive multitasking. In such a system, the process scheduler decides which process runs 

and when. 
 
Making these decisions in a way that balances fairness and performance across many different workloads is one of the 
more complicated challenges in modern operating systems.  

Normally, we think of scheduling as the running and interrupting of user processes, but another aspect of 
scheduling is also important to Linux: the running of the various kernel tasks. Kernel tasks encompass both tasks that 
are requested by a running process and tasks that execute internally on behalf of the kernel itself, such as tasks 
spawned by Linux’s I/O subsystem. 

 

Process Scheduling  
Linux has two separate process-scheduling algorithms. One is a time-sharing algorithm for fair, preemptive 

scheduling among multiple processes. The other is designed for real-time tasks, where absolute priorities are more 
important than fairness.  

The scheduling algorithm used for routine time-sharing tasks received a major overhaul with version 2.6 of the 
kernel. Earlier versions ran a variation of the traditional UNIX scheduling algorithm. This algorithm does not provide 

adequate support for SMP systems, does not scale well as the number of tasks on the system grows, and does not 
maintain fairness among interactive tasks, particularly on systems such as desktops and mobile devices. The process 

scheduler was first overhauled with version 2.5 of the kernel. Version 2.5 implemented a scheduling algorithm that 
selects which task to run in constant time — known as O(1) regardless of the number of tasks or processors in the 

system. The new scheduler also provided increased support for SMP, including processor affinity and load balancing. 
These changes, while improving scalability, did not improve interactive performance or fairness and, in fact, made 

these problems worse under certain workloads. Consequently, the process scheduler was overhauled a second time, 
with Linux kernel version 2.6.  

 

Completely Fair Scheduler (CFS).  
The Linux scheduler is a preemptive, priority-based algorithm with two separate priority ranges: a real-time 

range from 0 to 99 and a nice value ranging from 20 to 19. Smaller nice values indicate higher priorities. Thus, by 
increasing the nice value, you are decreasing your priority and being “nice” to the rest of the system.  

CFS is a significant departure from the traditional UNIX process scheduler. In the latter, the core variables in 

the scheduling algorithm are priority and time slice. The time slice is the length of time — the slice of the processor 

that a process is afforded. Traditional UNIX systems give processes a fixed time slice, perhaps with a boost or penalty 

for high- or low-priority processes, respectively. A process may run for the length of its time slice, and higher-priority 

processes run before lower-priority processes. It is a simple algorithm that many non-UNIX systems employ. Such 

simplicity worked well for early time-sharing systems but has proved incapable of delivering good interactive 

performance and fairness on today’s modern desktops and mobile devices.  
CFS introduced a new scheduling algorithm called fair scheduling that eliminates time slices in the traditional 

sense. Instead of time slices, all processes are allotted a proportion of the processor’s time. CFS calculates how long a 

process should run as a function of the total number of runnable processes.  
To start, CFS says that if there are N runnable processes, then each should be afforded 1/N of the processor’s 

time. CFS then adjusts this allotment by weighting each process’s allotment by its nice value. Processes with the 
default nice value have a weight of 1 their priority is unchanged. Processes with a smaller nice value (higher priority) 

receive a higher weight, while processes with a larger nice value (lower priority) receive a lower weight. CFS then runs  
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each process for a “time slice” proportional to the process’s weight divided by the total weight of all runnable 
processes.  

To calculate the actual length of time a process runs, CFS relies on a configurable variable called target 
latency, which is the interval of time during which every runnable task should run at least once. For example, assume 

that the target latency is 10 milliseconds. Further assume that we have two runnable processes of the same priority. 
Each of these processes has the same weight and therefore receives the same proportion of the processor’s time. In this 
case, with a target latency of 10 milliseconds, the first process runs for 5 milliseconds, then the other process runs for 5 
milliseconds, then the first process runs for 5 milliseconds again, and so forth. If we have 10 runnable processes, then 
CFS will run each for a millisecond before repeating.  
But what if we had, say, 1, 000 processes? Each process would run for 1 microsecond if we followed the procedure just 

described. Due to switching costs, scheduling processes for such short lengths of time is inefficient. CFS consequently 

relies on a second configurable variable, the minimum granularity, which is a minimum length of time any process is 

allotted the processor. All processes, regardless of the target latency, will run for at least the minimum granularity. In 

this manner, CFS ensures that switching costs do not grow unacceptably large when the number of runnable processes 

grows too large. In doing so, it violates its attempts at fairness. In the usual case, however, the number of runnable 

processes remains reasonable, and both fairness and switching costs are maximized.  
With the switch to fair scheduling, CFS behaves differently from traditional UNIX process schedulers in 

several ways. Most notably, as we have seen, CFS eliminates the concept of a static time slice. Instead, each process 

receives a proportion of the processor’s time. How long that allotment is depends on how many other processes are 

runnable. This approach solves several problems in mapping priorities to time slices inherent in preemptive, priority-

based scheduling algorithms. It is possible, of course, to solve these problems in other ways without abandoning the 

classic UNIX scheduler. CFS, however, solves the problems with a simple algorithm that performs well on interactive 

workloads such as mobile devices without compromising throughput performance on the largest of servers. 

 

Real-Time Scheduling  
Linux’s real-time scheduling algorithm is significantly simpler than the fair scheduling employed for standard 

time-sharing processes. Linux implements the two real-time scheduling classes required by POSIX.1b: first-come, 
first-served (FCFS) and round-robin. In both cases, each process has a priority in addition to its scheduling class. The 
scheduler always runs the process with the highest priority. Among processes of equal priority, it runs the process that 

has been waiting longest. The only difference between FCFS and round-robin scheduling is that FCFS processes 
continue to run until they either exit or block, whereas a round-robin process will be preempted after a while and will 
be moved to the end of the scheduling queue, so round-robin processes of equal priority will automatically time-share 
among themselves.  

Linux’s real-time scheduling is soft rather than hard real time. The scheduler offers strict guarantees about the 
relative priorities of real-time processes, but the kernel does not offer any guarantees about how quickly a real-time 
process will be scheduled once that process becomes runnable. In contrast, a hard real-time system can guarantee a 
minimum latency between when a process becomes runnable and when it actually runs. 

 

Kernel Synchronization  
The way the kernel schedules its own operations is fundamentally different from the way it schedules 

processes. A request for kernel-mode execution can occur in two ways. A running program may request an operating-
system service, either explicitly via a system call or implicitly for example, when a page fault occurs. Alternatively, a 

device controller may deliver a hardware interrupt that causes the CPU to start executing a kernel-defined handler for 
that interrupt.  

The problem for the kernel is that all these tasks may try to access the same internal data structures. If one 

kernel task is in the middle of accessing some data structure when an interrupt service routine executes, then that 
service routine cannot access or modify the same data without risking data corruption. This fact relates to the idea of 

critical sections portions of code that access shared data and thus must not be allowed to execute concurrently. As a 

result, kernel synchronization involves much more than just process scheduling. A framework is required that allows 
kernel tasks to run without violating the integrity of shared data.  

Prior to version 2.6, Linux was a nonpreemptive kernel, meaning that a process running in kernel mode could 
not be preempted even if a higher-priority process became available to run. With version 2.6, the Linux kernel became 
fully preemptive. Now, a task can be preempted when it is running in the kernel.  
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The Linux kernel provides spinlocks and semaphores (as well as reader – writer versions of these two locks) 
for locking in the kernel. On SMP machines, the fundamental locking mechanism is a spinlock, and the kernel is 
designed so that spinlocks are held for only short durations. On single-processor machines, spinlocks are not 
appropriate for use and are replaced by enabling and disabling kernel preemption. That is, rather than holding a 
spinlock, the task disables kernel preemption. When the task would otherwise release the spinlock, it enables kernel 
preemption. This pattern is summarized below: 
 

Single processor Multiple processors 
  

Disable kernel preemption Acquire spin lock 
  

Enable kernel preemption Release spin lock 
   

 

Linux uses an interesting approach to disable and enable kernel pre-emption. It provides two simple kernel 
interfaces preempt disable() and preempt enable(). In addition, the kernel is not preemptible if a kernel-mode task is 

holding a spinlock. To enforce this rule, each task in the system has a thread-info structure that includes the field 

preempt count, which is a counter indicating the number of locks being held by the task. The counter is incremented 

when a lock is acquired and decremented when a lock is released. If the value of preempt count for the task currently 

running is greater than zero, it is not safe to preempt the kernel, as this task currently holds a lock. If the count is zero, 

the kernel can safely be interrupted, assuming there are no outstanding calls to preempt disable().   
Spinlocks along with the enabling and disabling of kernel preemption are used in the kernel only when the 

lock is held for short durations. When a lock must be held for longer periods, semaphores are used.  
The second protection technique used by Linux applies to critical sections that occur in interrupt service 

routines. The basic tool is the processor’s interrupt-control hardware. By disabling interrupts (or using spinlocks) 
during a critical section, the kernel guarantees that it can proceed without the risk of concurrent access to shared data 
structures.  

However, there is a penalty for disabling interrupts. On most hardware architectures, interrupt enable and 

disable instructions are not cheap. More importantly, as long as interrupts remain disabled, all I/O is suspended, and 
any device waiting for servicing will have to wait until interrupts are reenabled; thus, performance degrades. To 

address this problem, the Linux kernel uses a synchronization architecture that allows long critical sections to run for 
their entire duration without having interrupts disabled. This ability is especially useful in the networking code. An 

interrupt in a network device driver can signal the arrival of an entire network packet, which may result in a great deal 
of code being executed to disassemble, route, and forward that packet within the interrupt service routine.  

Linux implements this architecture by separating interrupt service routines into two sections: the top half and 
the bottom half. The top half is the standard interrupt service routine that runs with recursive interrupts disabled. 
Interrupts of the same number (or line) are disabled, but other interrupts may run. The bottom half of a service routine 
is run, with all interrupts enabled, by a miniature scheduler that ensures that bottom halves never interrupt themselves. 
The bottom-half scheduler is invoked automatically whenever an interrupt service routine exits.  
This separation means that the kernel can complete any complex processing that has to be done in response to an 

interrupt without worrying about being interrupted itself. If another interrupt occurs while a bottom half is executing, 
then that interrupt can request that the same bottom half execute, but the execution will be deferred until the one 

currently running completes. Each execution of the bottom half can be interrupted by a top half but can never be 
interrupted by a similar bottom half.  

The top-half/bottom-half architecture is completed by a mechanism for disabling selected bottom halves while 

executing normal, foreground kernel code. The kernel can code critical sections easily using this system. Interrupt 
handlers can code their critical sections as bottom halves; and when the foreground kernel wants to enter a critical 

section, it can disable any relevant bottom halves to prevent any other critical sections from interrupting it. At the end 

of the critical section, the kernel can reenable the bottom halves and run any bottom-half tasks that have been queued 
by top-half interrupt service routines during the critical section.  
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top-half interrupt handlers 

 

bottom –half interrupt handlers 

 

kernel-system service routines (Preemptible) 
 

 

user-mode programs (Preemptible) 

 

Fig 5.2: Interrupt protection levels 
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Figure 5.2 summarizes the various levels of interrupt protection within the kernel. Each level may be interrupted by 
code running at a higher level but will never be interrupted by code running at the same or a lower level. Except for 
user-mode code, user processes can always be preempted by another process when a time-sharing scheduling interrupt 
occurs. 

 

Symmetric Multiprocessing  
The Linux 2.0 kernel was the first stable Linux kernel to support symmetric multiprocessor (SMP) hardware, 

allowing separate processes to execute in parallel on separate processors. The original implementation of SMP imposed 
the restriction that only one processor at a time could be executing kernel code.  

In version 2.2 of the kernel, a single kernel spinlock (sometimes termed BKL for “big kernel lock”) was 

created to allow multiple processes (running on different processors) to be active in the kernel concurrently. However, 

the BKL provided a very coarse level of locking granularity, resulting in poor scalability to machines with many 

processors and processes. Later releases of the kernel made the SMP implementation more scalable by splitting this 

single kernel spinlock into multiple locks, each of which protects only a small subset of the kernel’s data structures. 

Such spinlocks are described in Section 18.5.3. The 3.0 kernel provides additional SMP enhancements, including ever-

finer locking, processor affinity, and load-balancing algorithms. 

 

Memory Management  
Memory management under Linux has two components. The first deals with allocating and freeing physical 

memory — pages, groups of pages, and small blocks of RAM. The second handles virtual memory, which is memory-
mapped into the address space of running processes. In this section, we describe these two components and then 

examine the mechanisms by which the loadable components of a new program are brought into a process’s virtual 
memory in response to an exec() system call. 

 

Management of Physical Memory 
Due to specific hardware constraints, Linux separates physical memory into four different zones, or regions: 
 

 ZONE DMA


 ZONE DMA32


 ZONE NORMAL


 ZONE HIGHMEM  
These zones are architecture specific. For example, on the Intel x86-32 architec-ture, certain ISA (industry 

standard architecture) devices can only access the lower 16 MB of physical memory using DMA. On these systems, the 
first 16 MB of physical memory comprise ZONE DMA. On other systems, certain devices can only access the first 4 
GB of physical memory, despite supporting 64-bit addresses. On such systems, the first 4 GB of physical memory 
comprise ZONE DMA32. ZONE HIGHMEM (for “high memory”) refers to physical memory that is not mapped into 

the kernel address space. For example, on the 32-bit Intel architecture (where 2
32

 provides a 4-GB address space), the 

kernel is mapped into the first 896 MB of the address space; the remaining memory is referred to as high memory and 
is allocated from ZONE HIGHMEM. Finally, ZONE NORMAL comprises everything else — the normal, regularly  
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mapped pages. Whether an architecture has a given zone depends on its constraints. A modern, 64-bit architecture such 
as Intel x86-64 has a small 16 MB ZONE DMA (for legacy devices) and all the rest of its memory in ZONE 
NORMAL, with no “high memory”.   

The relationship of zones and physical addresses on the Intel x86-32 architecture is shown in Figure 5.3. The 
kernel maintains a list of free pages for each zone. When a request for physical memory arrives, the kernel satisfies the 
request using the appropriate zone.  

The primary physical-memory manager in the Linux kernel is the page allocator. Each zone has its own 

allocator, which is responsible for allocating and freeing all physical pages for the zone and is capable of allocating 
ranges of physically contiguous pages on request. The allocator uses a buddy system (Section 9.8.1) to keep track of 

available physical pages. In this scheme, adjacent units of allocatable memory are paired together (hence its name). 
Each allocatable memory region has an adjacent partner (or buddy). Whenever two allocated partner regions are freed 

up, they are combined to form a larger region — a buddy heap. That larger region also has a partner, with which it can 
combine to form a still larger free region. Conversely, if a small memory request cannot be satisfied by allocation of an 

existing small free region, then a larger free region will be subdivided into two partners to satisfy the request. Separate 

linked lists are used to record the free memory regions of each allowable size. Under Linux, the smallest size 
allocatable under this mechanism is a single physical page. Figure 5.3 shows an example of buddy-heap allocation. A 

4-KB region is being allocated, but the smallest available region is 16 KB. The region is broken up recursively until a 
piece of the desired size is available.  

zone physical memory 

ZONE_DMA < 16 MB 
   

ZONE_NORMAL 16 .. 896 MB 

ZONE_HIGHMEM > 896 MB 
 
 

Figure 5.3  Relationship of zones and physical addresses in Intel x86-32. 

 

Ultimately, all memory allocations in the Linux kernel are made either statically, by drivers that reserve a 
contiguous area of memory during system boot time, or dynamically, by the page allocator. However, kernel functions 
do not have to use the basic allocator to reserve memory. Several specialized memory-management subsystems use the 
underlying page allocator to man-age their own pools of memory. The most important are the virtual memory system, 
the kmalloc() variable-length allocator; the slab allocator, used for allocating memory for kernel data structures; and 
the page cache, used for caching pages belonging to files.  

Many components of the Linux operating system need to allocate entire pages on request, but often smaller 
blocks of memory are required. The kernel provides an additional allocator for arbitrary-sized requests, where the size 
of a request is not known in advance and may be only a few bytes. Analogous to the C language’s malloc() function, 
this kmalloc() service allocates entire physical pages on demand but then splits them into smaller pieces. The kernel 
maintains lists of pages in use by the kmalloc() service. Allocating memory involves determining the appropriate list 
and either taking the first free piece available on the list or allocating a new page and splitting it up. Memory regions 
claimed by the kmalloc() system are allocated permanently until they are freed explicitly with a corresponding call to 
kfree(); the kmalloc() system cannot reallocate or reclaim these regions in response to memory shortages.  

Another strategy adopted by Linux for allocating kernel memory is known as slab allocation. A slab is used for 

allocating memory for kernel data structures and is made up of one or more physically contiguous pages. A cache 

consists of one or more slabs. There is a single cache for each unique kernel data structure — for example, a cache for 

the data structure representing process descriptors, a cache for file objects, a cache for inodes, and so forth. 
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Each cache is populated with objects that are instantiations of the kernel data structure the cache represents. 
For example, the cache representing inodes stores instances of inode structures, and the cache representing process 
descriptors stores instances of process descriptor structures. The relationship among slabs, caches, and objects is shown 

in Figure 5.5. The figure shows two kernel objects 3 KB in size and three objects 7 KB in size. These objects are stored 
in the respective caches for 3-KB and 7-KB objects.  

The slab-allocation algorithm uses caches to store kernel objects. When a cache is created, a number of objects 
are allocated to the cache. The number of objects in the cache depends on the size of the associated slab. For example, 

a 12-KB slab (made up of three contiguous 4-KB pages) could store six 2-KB objects. Initially, all the objects in the 
cache are marked as free. When a new object for a kernel data structure is needed, the allocator can assign any free 
object from the cache to satisfy the request. The object assigned from the cache is marked as used.  

Let’s consider a scenario in which the kernel requests memory from the slab allocator for an object 
representing a process descriptor. In Linux systems, a process descriptor is of the type struct task struct, which requires 
approximately 1.7 KB of memory. When the Linux kernel creates a new task, it requests the necessary memory for the 
struct task struct object from its cache. The cache will fulfill the request using a struct task struct object that has already 
been allocated in a slab and is marked as free.   
In Linux, a slab may be in one of three possible states: 
 

 Full. All objects in the slab are marked as used.


 Empty. All objects in the slab are marked as free.


 Partial. The slab consists of both used and free objects.
 

The slab allocator first attempts to satisfy the request with a free object in a partial slab. If none exist, a free object 

is assigned from an empty slab. If no empty slabs are available, a new slab is allocated from contiguous physical 

pages and assigned to a cache; memory for the object is allocated from this slab.   
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Two other main subsystems in Linux do their own management of physical pages: the page cache and the virtual 
memory system. These systems are closely related to each other. The page cache is the kernel’s main cache for files 

and is the main mechanism through which I/O to block devices is performed. File systems of all types, including the 
native Linux disk-based file systems and the NFS networked file system, perform their I/O through the page cache. The 

page cache stores entire pages of file contents and is not limited to block devices. It can also cache networked data. The 
virtual memory system manages the contents of each process’s virtual address space. These two systems interact 

closely with each other because reading a page of data into the page cache requires mapping pages in the page cache 
using the virtual memory system. 

 

Virtual Memory  
The Linux virtual memory system is responsible for maintaining the address space accessible to each process. 

It creates pages of virtual memory on demand and manages loading those pages from disk and swapping them back out 
to disk as required. Under Linux, the virtual memory manager maintains two separate views of a process’s address 
space: as a set of separate regions and as a set of pages.  

The first view of an address space is the logical view, describing instructions that the virtual memory system 
has received concerning the layout of the address space. In this view, the address space consists of a set of 

nonoverlapping regions, each region representing a continuous, page-aligned subset of the address space. Each region 
is described internally by a single vm area struct structure that defines the properties of the region, including the 

process’s read, write, and execute permissions in the region as well as information about any files associated with the 
region. The regions for each address space are linked into a balanced binary tree to allow fast lookup of the region 

corresponding to any virtual address.  
The kernel also maintains a second, physical view of each address space. This view is stored in the hardware 

page tables for the process. The page-table entries identify the exact current location of each page of virtual memory, 

whether it is on disk or in physical memory. The physical view is managed by a set of routines, which are invoked 
from the kernel’s software-interrupt handlers whenever a process tries to access a page that is not currently present in 

the page tables. Each vm area struct in the address-space description contains a field pointing to a table of functions 
that implement the key page-management functionality for any given virtual memory region. All requests to read or 

write an unavailable page are eventually dispatched to the appropriate handler in the function table for the vm area 
struct, so that the central memory-management routines do not have to know the details of managing each possible type 

of memory region.  
 

Virtual Memory Regions  
Linux implements several types of virtual memory regions. One property that characterizes virtual memory is 

the backing store for the region, which describes where the pages for the region come from. Most memory regions are 
backed either by a file or by nothing. A region backed by nothing is the simplest type of virtual memory region. Such a 
region represents demand-zero memory: when a process tries to read a page in such a region, it is simply given back a 
page of memory filled with zeros.  

A region backed by a file acts as a viewport onto a section of that file. Whenever the process tries to access a 
page within that region, the page table is filled with the address of a page within the kernel’s page cache corresponding 

to the appropriate offset in the file. The same page of physical memory is used by both the page cache and the 
process’s page tables, so any changes made to the file by the file system are immediately visible to any processes that 

have mapped that file into their address space. Any number of processes can map the same region of the same file, and 
they will all end up using the same page of physical memory for the purpose.  

A virtual memory region is also defined by its reaction to writes. The mapping of a region into the process’s 
address space can be either private or shared. If a process writes to a privately mapped region, then the pager detects 
that a copy-on-write is necessary to keep the changes local to the process. In contrast, writes to a shared region result in 
updating of the object mapped into that region, so that the change will be visible immediately to any other process that 
is mapping that object. 

 

Lifetime of a Virtual Address Space  
The kernel creates a new virtual address space in two situations: when a process runs a new program with the 

exec() system call and when a new process is created by the fork() system call. The first case is easy. When a new  
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program is executed, the process is given a new, completely empty virtual address space. It is up to the routines for 
loading the program to populate the address space with virtual memory regions.  

The second case, creating a new process with fork(), involves creating a complete copy of the existing 
process’s virtual address space. The kernel copies the parent process’s vm area struct descriptors, then creates a new set 

of page tables for the child. The parent’s page tables are copied directly into the child’s, and the reference count of each 
page covered is incremented. Thus, after the fork, the parent and child share the same physical pages of memory in 
their address spaces.   

A special case occurs when the copying operation reaches a virtual memory region that is mapped privately. 
Any pages to which the parent process has written within such a region are private, and subsequent changes to these 
pages by either the parent or the child must not update the page in the other process’s address space. When the page-
table entries for such regions are copied, they are set to be read only and are marked for copy-on-write. As long as 
neither process modifies these pages, the two processes share the same page of physical memory. However, if either 
process tries to modify a copy-on-write page, the reference count on the page is checked. If the page is still shared, then 
the process copies the page’s contents to a brand-new page of physical memory and uses its copy instead. This 
mechanism ensures that private data pages are shared between processes whenever possible and copies are made only 
when absolutely necessary. 

 

Swapping and Paging  
An important task for a virtual memory system is to relocate pages of memory from physical memory out to 

disk when that memory is needed. Early UNIX systems performed this relocation by swapping out the contents of 
entire processes at once, but modern versions of UNIX rely more on paging — the movement of individual pages of 
virtual memory between physical memory and disk. Linux does not implement whole-process swapping; it uses the 
newer paging mechanism exclusively.  

The paging system can be divided into two sections. First, the policy algorithm decides which pages to write 
out to disk and when to write them. Second, the paging mechanism carries out the transfer and pages data back into 
physical memory when they are needed again.  

Linux’s pageout policy uses a modified version of the standard clock (or second-chance) algorithm. Under 
Linux, a multiple-pass clock is used, and every page has an age that is adjusted on each pass of the clock. The age is 
more precisely a measure of the page’s youthfulness, or how much activity the page has seen recently. Frequently 
accessed pages will attain a higher age value, but the age of infrequently accessed pages will drop toward zero with 
each pass. This age valuing allows the pager to select pages to page out based on a least frequently used (LFU) policy.  

The paging mechanism supports paging both to dedicated swap devices and partitions and to normal files, 
although swapping to a file is significantly slower due to the extra overhead incurred by the file system. Blocks are 

allocated from the swap devices according to a bitmap of used blocks, which is maintained in physical memory at all 
times. The allocator uses a next-fit algorithm to try to write out pages to continuous runs of disk blocks for improved 

performance. The allocator records the fact that a page has been paged out to disk by using a feature of the page tables 
on modern processors: the page-table entry’s page-not-present bit is set, allowing the rest of the page-table entry to be 

filled with an index identifying where the page has been written. 

 

Kernel Virtual Memory  
Linux reserves for its own internal use a constant, architecture-dependent region of the virtual address space of 

every process. The page-table entries that map to these kernel pages are marked as protected, so that the pages are not 
visible or modifiable when the processor is running in user mode. This kernel virtual memory area contains two 
regions. The first is a static area that contains page-table references to every available physical page of memory in the 
system, so that a simple translation from physical to virtual addresses occurs when kernel code is run. The core of the 
kernel, along with all pages allocated by the normal page allocator, resides in this region.  

The remainder of the kernel’s reserved section of address space is not reserved for any specific purpose. Page-
table entries in this address range can be modified by the kernel to point to any other areas of memory. The kernel 

provides a pair of facilities that allow kernel code to use this virtual memory. The vmalloc() function allocates an 
arbitrary number of physical pages of memory that may not be physically contiguous into a single region of virtually 

contiguous kernel memory. The vremap() function maps a sequence of virtual addresses to point to an area of memory 
used by a device driver for memory-mapped I/O.  
 
 

   



CS8493-Operating System    
 

 

Execution and Loading of User Programs  
The Linux kernel’s execution of user programs is triggered by a call to the exec() system call. This exec() call 

commands the kernel to run a new program within the current process, completely overwriting the current execution 

context with the initial context of the new program. The first job of this system service is to verify that the calling 
process has permission rights to the file being executed. Once that matter has been checked, the kernel invokes a loader 

routine to start running the program. The loader does not necessarily load the contents of the program file into physical 
memory, but it does at least set up the mapping of the program into virtual memory. 
 

There is no single routine in Linux for loading a new program. Instead, Linux maintains a table of possible loader 

functions, and it gives each such function the opportunity to try loading the given file when an exec() system call is 

made. The initial reason for this loader table was that, between the releases of the 1.0 and 1.2 kernels, the standard 

format for Linux’s binary files was changed. Older Linux kernels understood the a.out format for binary files — a 

relatively simple format common on older UNIX systems. Newer Linux systems use the more modern ELF format, 
now supported by most current UNIX implementations. ELF has a number of advantages over a.out, including 

flexibility and extendability. New sections can be added to an ELF binary (for example, to add extra debugging 

information) without causing the loader routines to become confused. By allowing registration of multiple loader 

routines, Linux can easily support the ELF and a.out binary formats in a single running system. 

 

Mapping of Programs into Memory  
Under Linux, the binary loader does not load a binary file into physical memory. Rather, the pages of the binary 

file are mapped into regions of virtual memory. Only when the program tries to access a given page will a page fault 
result in the loading of that page into physical memory using demand paging.  

It is the responsibility of the kernel’s binary loader to set up the initial memory mapping. An ELF-format binary 
file consists of a header followed by several page-aligned sections. The ELF loader works by reading the header and 
mapping the sections of the file into separate regions of virtual memory.  
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Fig 5.6 Memory layout for ELF programs 

 

Figure 5.6 shows the typical layout of memory regions set up by the ELF loader. In a reserved region at one end of the 
address space sits the kernel, in its own privileged region of virtual memory inaccessible to normal user-mode 
programs. The rest of virtual memory is available to applications, which can use the kernel’s memory-mapping 
functions to create regions that map a portion of a file or that are available for application data.  

The loader’s job is to set up the initial memory mapping to allow the execution of the program to start. The 
regions that need to be initialized include the stack and the program’s text and data regions.  

The stack is created at the top of the user-mode virtual memory; it grows downward toward lower-numbered 
addresses. It includes copies of the arguments and environment variables given to the program in the exec() system  
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call. The other regions are created near the bottom end of virtual memory. The sections of the binary file that contain 
program text or read-only data are mapped into memory as a write-protected region. Writable initialized data are 
mapped next; then any uninitialized data are mapped in as a private demand-zero region.  
Directly beyond these fixed-sized regions is a variable-sized region that programs can expand as needed to hold data 
allocated at run time. Each process has a pointer, brk, that points to the current extent of this data region, and processes 
can extend or contract their brk region with a single system call— sbrk().  

Once these mappings have been set up, the loader initializes the process’s program-counter register with the 
starting point recorded in the ELF header, and the process can be scheduled.  
Static and Dynamic Linking  

Once the program has been loaded and has started running, all the necessary contents of the binary file have 

been loaded into the process’s virtual address space. However, most programs also need to run functions from the 

system libraries, and these library functions must also be loaded. In the simplest case, the necessary library functions 

are embedded directly in the program’s executable binary file. Such a program is statically linked to its libraries, and 

statically linked executables can commence running as soon as they are loaded.  
The main disadvantage of static linking is that every program generated must contain copies of exactly the 

same common system library functions. It is much more efficient, in terms of both physical memory and disk-space 
usage, to load the system libraries into memory only once. Dynamic linking allows that to happen.  

Linux implements dynamic linking in user mode through a special linker library. Every dynamically linked 
program contains a small, statically linked function that is called when the program starts. This static function just 
maps the link library into memory and runs the code that the function contains. The link library determines the 
dynamic libraries required by the program and the names of the variables and functions needed from those libraries by 
reading the information contained in sections of the ELF binary. It then maps the libraries into the middle of virtual 
memory and resolves the references to the symbols contained in those libraries. It does not matter exactly where in 
memory these shared libraries are mapped: they are compiled into position-independent code (PIC), which can run at 
any address in memory. 
 
 

File Systems  
Linux retains UNIX’s standard file-system model. In UNIX, a file does not have to be an object stored on disk 

or fetched over a network from a remote file server. Rather, UNIX files can be anything capable of handling the input 
or output of a stream of data. Device drivers can appear as files, and interprocess-communication channels or network 

connections also look like files to the user.  
The Linux kernel handles all these types of files by hiding the implemen-tation details of any single file type 

behind a layer of software, the virtual file system (VFS). Here, we first cover the virtual file system and then discuss 
the standard Linux file system — ext3.  
The Virtual File System  

The Linux VFS is designed around object-oriented principles. It has two components: a set of definitions that 
specify what file-system objects are allowed to look like and a layer of software to manipulate the objects. The VFS 
defines four main object types:  

 An inode object represents an individual file.

 A file object represents an open file.

 A superblock object represents an entire file system.


 A dentry object represents an individual directory entry. 
For each of these four object types, the VFS defines a set of operations. Every object of one of these types 

contains a pointer to a function table. The function table lists the addresses of the actual functions that implement the 
defined operations for that object. For example, an abbreviated API for some of the file object’s operations includes:  

int open(. . .) — Open a file. 
 

ssize t read(. . .) — Read from a file.   
ssize t write(. . .) — Write to a file.   
int mmap(. . .) — Memory-map a file.  
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The complete definition of the file object is specified in the struct file operations, which is located in the file 

/usr/include/linux/fs.h. An implementation of the file object (for a specific file type) is required to implement each 

function specified in the definition of the file object.   
The VFS software layer can perform an operation on one of the file-system objects by calling the appropriate 

function from the object’s function table, without having to know in advance exactly what kind of object it is dealing 
with. The VFS does not know, or care, whether an inode represents a networked file, a disk file, a network socket, or a 
directory file. The appropriate function for that file’s read() operation will always be at the same place in its function 
table, and the VFS software layer will call that function without caring how the data are actually read.  

The inode and file objects are the mechanisms used to access files. An inode object is a data structure 
containing pointers to the disk blocks that contain the actual file contents, and a file object represents a point of access 

to the data in an open file. A process cannot access an inode’s contents without first obtaining a file object pointing to 
the inode. The file object keeps track of where in the file the process is currently reading or writing, to keep track of 

sequential file I/O. It also remembers the permissions (for example, read or write) requested when the file was opened 
and tracks the process’s activity if necessary to perform adaptive read-ahead, fetching file data into memory before the 

process requests the data, to improve performance.  
File objects typically belong to a single process, but inode objects do not. There is one file object for every 

instance of an open file, but always only a single inode object. Even when a file is no longer in use by any process, its 
inode object may still be cached by the VFS to improve performance if the file is used again in the near future. All 
cached file data are linked onto a list in the file’s inode object. The inode also maintains standard information about 
each file, such as the owner, size, and time most recently modified.  

Directory files are dealt with slightly differently from other files. The UNIX programming interface defines a 
number of operations on directories, such as creating, deleting, and renaming a file in a directory. The system calls for 
these directory operations do not require that the user open the files concerned, unlike the case for reading or writing 
data. The VFS therefore defines these directory operations in the inode object, rather than in the file object.  

The superblock object represents a connected set of files that form a self-contained file system. The operating-
system kernel maintains a single superblock object for each disk device mounted as a file system and for each 
networked file system currently connected. The main responsibility of the superblock object is to provide access to 
inodes. The VFS identifies every inode by a unique file-system/inode number pair, and it finds the inode corresponding 
to a particular inode number by asking the superblock object to return the inode with that number.  

Finally, a dentry object represents a directory entry, which may include the name of a directory in the path 
name of a file (such as /usr) or the actual file (such as stdio.h). For example, the file /usr/include/stdio.h contains the 
directory entries (1) /, (2) usr, (3) include, and (4) stdio.h. Each of these values is represented by a separate dentry 
object.  

As an example of how dentry objects are used, consider the situ-ation in which a process wishes to open the 

file with the pathname /usr/include/stdio.h using an editor. Because Linux treats directory names as files, translating 

this path requires first obtaining the inode for the root — /. The operating system must then read through this file to 

obtain the inode for the file include. It must continue this process until it obtains the inode for the file stdio.h. Because 

path-name translation can be a time-consuming task, Linux maintains a cache of dentry objects, which is consulted 

during path-name translation. Obtaining the inode from the dentry cache is considerably faster than having to read the 

on-disk file. 

 

The Linux ext3 File System  
The standard on-disk file system used by Linux is called ext3, for historical reasons. Linux was originally 

programmed with a Minix-compatible file system, to ease exchanging data with the Minix development system, but 

that file system was severely restricted by 14-character file-name limits and a maximum file-system size of 64 MB. 
The Minix file system was superseded by a new file system, which was christened the extended file system (extfs). A 

later redesign to improve performance and scalability and to add a few missing features led to the second extended file 
system (ext2). Further development added journaling capabilities, and the system was renamed the third extended file 

system (ext3). Linux kernel developers are working on augmenting ext3 with modern file-system features such as 

extents. This new file system is called the fourth extended file system (ext4). The rest of this section discusses ext3, 

however, since it remains the most-deployed Linux file system. Most of the discussion applies equally to ext4.  
Linux’s ext3 has much in common with the BSD Fast File System (FFS). It uses a similar mechanism for 

locating the data blocks belonging to a specific file, storing data-block pointers in indirect blocks throughout the file  
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system with up to three levels of indirection. As in FFS, directory files are stored on disk just like normal files, 
although their contents are interpreted differently. Each block in a directory file consists of a linked list of entries. In 
turn, each entry contains the length of the entry, the name of a file, and the inode number of the inode to which that 
entry refers.  

The main differences between ext3 and FFS lie in their disk-allocation policies. In FFS, the disk is allocated to 
files in blocks of 8 KB. These blocks are subdivided into fragments of 1 KB for storage of small files or partially filled 
blocks at the ends of files. In contrast, ext3 does not use fragments at all but performs all its allocations in smaller 
units. The default block size on ext3 varies as a function of the total size of the file system. Supported block sizes are 
1, 2, 4, and 8 KB.  

To maintain high performance, the operating system must try to perform I/O operations in large chunks 

whenever possible by clustering physically adjacent I/O requests. Clustering reduces the per-request overhead incurred 

by device drivers, disks, and disk-controller hardware. A block-sized I/O request size is too small to maintain good 

performance, so ext3 uses allocation policies designed to place logically adjacent blocks of a file into physically 

adjacent blocks on disk, so that it can submit an I/O request for several disk blocks as a single operation.  
The ext3 allocation policy works as follows: As in FFS, an ext3 file system is partitioned into multiple 

segments. In ext3, these are called block groups. FFS uses the similar concept of cylinder groups, where each group 

corresponds to a single cylinder of a physical disk. (Note that modern disk-drive technology packs sectors onto the disk 
at different densities, and thus with different cylinder sizes, depending on how far the disk head is from the center of 

the disk. Therefore, fixed-sized cylinder groups do not necessarily correspond to the disk’s geometry.)  
When allocating a file, ext3 must first select the block group for that file. For data blocks, it attempts to 

allocate the file to the block group to which the file’s inode has been allocated. For inode allocations, it selects the 
block group in which the file’s parent directory resides for nondirectory files. Directory files are not kept together but 
rather are dispersed throughout the available block groups. These policies are designed not only to keep related 
information within the same block group but also to spread out the disk load among the disk’s block groups to reduce 
the fragmentation of any one area of the disk.  

Within a block group, ext3 tries to keep allocations physically contiguous if possible, reducing fragmentation if 
it can. It maintains a bitmap of all free blocks in a block group. When allocating the first blocks for a new file, it starts 

searching for a free block from the beginning of the block group. When extending a file, it continues the search from 
the block most recently allocated to the file. The search is performed in two stages. First, ext3 searches for an entire 

free byte in the bitmap; if it fails to find one, it looks for any free bit. The search for free bytes aims to allocate disk 
space in chunks of at least eight blocks where possible.  

Once a free block has been identified, the search is extended backward until an allocated block is encountered. 
When a free byte is found in the bitmap, this backward extension prevents ext3 from leaving a hole between the most 
recently allocated block in the previous nonzero byte and the zero byte found. Once the next block to be allocated has 
been found by either bit or byte search, ext3 extends the allocation forward for up to eight blocks and preallocates these 
extra blocks to the file. This preallocation helps to reduce fragmentation during interleaved writes to separate files and 
also reduces the CPU cost of disk allocation by allocating multiple blocks simultaneously. The preallocated blocks are 
returned to the free-space bitmap when the file is closed.  

Figure 5.7 illustrates the allocation policies. Each row represents a sequence of set and unset bits in an 
allocation bitmap, indicating used and free blocks on disk. In the first case, if we can find any free blocks sufficiently 
near the start of the search, then we allocate them no matter how fragmented they may be. The fragmentation is 
partially compensated for by the fact that the blocks are close together and can probably all be read without any disk 
seeks. Furthermore, allocating them all to one file is better in the long run than allocating isolated blocks to separate 
files once large free areas become scarce on disk. In the second case, we have not immediately found a free block close 
by, so we search forward for an entire free byte in the bitmap. If we allocated that byte as a whole, we would end up 
creating a fragmented area of free space between it and the allocation preceding it. Thus, before allocating, we back up 
to make this allocation flush with the allocation preceding it, and then we allocate forward to satisfy the default 
allocation of eight blocks.  
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Journaling  
The ext3 file system supports a popular feature called journaling, whereby modifications to the file system are 

written sequentially to a journal. A set of operations that performs a specific task is a transaction. Once a transaction is 
written to the journal, it is considered to be committed. Meanwhile, the journal entries relating to the transaction are 
replayed across the actual file-system structures. As the changes are made, a pointer is updated to indicate which 
actions have completed and which are still incomplete. When an entire committed transaction is completed, it is 
removed from the journal. The journal, which is actually a circular buffer, may be in a separate section of the file 
system, or it may even be on a separate disk spindle. It is more efficient, but more complex, to have it under separate 
read – write heads, thereby decreasing head contention and seek times.  

If the system crashes, some transactions may remain in the journal. Those transactions were never completed 
to the file system even though they were committed by the operating system, so they must be completed once the 
system recovers. The transactions can be executed from the pointer until the work is complete, and the file-system 
structures remain consistent. The only problem occurs when a transaction has been aborted — that is, it was not 
committed before the system crashed. Any changes from those transactions that were applied to the file system must be 
undone, again preserving the consistency of the file system. This recovery is all that is needed after a crash, eliminating 
all problems with consistency checking.  

Journaling file systems may perform some operations faster than non-journaling systems, as updates proceed 
much faster when they are applied to the in-memory journal rather than directly to the on-disk data structures. The 

reason for this improvement is found in the performance advantage of sequential I/O over random I/O. Costly 

synchronous random writes to the file system are turned into much less costly synchronous sequential writes to the file 
system’s journal. Those changes, in turn, are replayed asynchronously via random writes to the appropriate structures. 

The overall result is a significant gain in performance of file-system metadata-oriented operations, such as file creation 
and deletion. Due to this performance improvement, ext3 can be configured to journal only metadata and not file data. 

 

The Linux Process File System  
The flexibility of the Linux VFS enables us to implement a file system that does not store data persistently at 

all but rather provides an interface to some other functionality. The Linux process file system, known as the /proc file 
system, is an example of a file system whose contents are not actually stored anywhere but are computed on demand 
according to user file I/O requests.  

A /proc file system is not unique to Linux. SVR4 UNIX introduced a /proc file system as an efficient interface 
to the kernel’s process debugging support. Each subdirectory of the file system corresponded not to a directory on any 
disk but rather to an active process on the current system. A listing of the file system reveals one directory per process, 
with the directory name being the ASCII decimal representation of the process’s unique process identifier (PID).  
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Linux implements such a /proc file system but extends it greatly by adding a number of extra directories and 
text files under the file system’s root directory. These new entries correspond to various statistics about the kernel and 

the associated loaded drivers. The /proc file system provides a way for programs to access this information as plain text 
files; the standard UNIX user environment provides powerful tools to process such files. For example, in the past, the 

traditional UNIX ps command for listing the states of all running processes has been implemented as a privileged 
process that reads the process state directly from the kernel’s virtual memory. Under Linux, this command is 

implemented as an entirely unprivileged program that simply parses and formats the information from /proc.  
The /proc file system must implement two things: a directory structure and the file contents within. Because a 

UNIX file system is defined as a set of file and directory inodes identified by their inode numbers, the /proc file system 
must define a unique and persistent inode number for each directory and the associated files. Once such a mapping 
exists, the file system can use this inode number to identify just what operation is required when a user tries to read 
from a particular file inode or to perform a lookup in a particular directory inode. When data are read from one of these 
files, the /proc file system will collect the appropriate information, format it into textual form, and place it into the 
requesting process’s read buffer.  

The mapping from inode number to information type splits the inode number into two fields. In Linux, a PID 
is 16 bits in size, but an inode number is 32 bits. The top 16 bits of the inode number are interpreted as a PID, and the 
remaining bits define what type of information is being requested about that process. 
 

A PID of zero is not valid, so a zero PID field in the inode number is taken to mean that this inode contains 
global rather than process-specific information. Separate global files exist in /proc to report information such as the 
kernel version, free memory, performance statistics, and drivers currently running. 

 

Input and Output  
To the user, the I/O system in Linux looks much like that in any UNIX system. That is, to the extent possible, 

all device drivers appear as normal files. Users can open an access channel to a device in the same way they open any 
other file — devices can appear as objects within the file system. The system administrator can create special files 

within a file system that contain references to a specific device driver, and a user opening such a file will be able to 
read from and write to the device referenced. By using the normal file-protection system, which determines who can 

access which file, the administrator can set access permissions for each device. 

 

Linux splits all devices into three classes: block devices, character devices, and network devices. Figure 5.8 
illustrates the overall structure of the device-driver system. 

 

Block devices include all devices that allow random access to completely independent, fixed-sized blocks of 

data, including hard disks and floppy disks, CD-ROMs and Blu-ray discs, and flash memory. Block devices are 

typically used to store file systems, but direct access to a block device is also allowed so that programs can create and 

repair the file system that the device contains. Applications can also access these block devices directly if they wish. 

For example, a database application may prefer to perform its own fine-tuned layout of data onto a disk rather than 

using the general-purpose file system. 

 

Character devices include most other devices, such as mice and keyboards. The fundamental difference 

between block and character devices is random access block devices are accessed randomly, while character devices 
are accessed serially. For example, seeking to a certain position in a file might be supported for a DVD but makes no 
sense for a pointing device such as a mouse.  

Network devices are dealt with differently from block and character devices. Users cannot directly transfer 
data to network devices. Instead, they must communicate indirectly by opening a connection to the kernel’s networking 
subsystem. 

 

Block Devices  
Block devices provide the main interface to all disk devices in a system. Performance is particularly important 

for disks, and the block-device system must provide functionality to ensure that disk access is as fast as possible. This 
functionality is achieved through the scheduling of I/O operations.  
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In the context of block devices, a block represents the unit with which the kernel performs I/O. When a block 
is read into memory, it is stored in a buffer. The request manager is the layer of software that manages the reading 
and writing of buffer contents to and from a block-device driver. 

 

A separate list of requests is kept for each block-device driver. Traditionally, these requests have been 

scheduled according to a unidirectional-elevator (C-SCAN) algorithm that exploits the order in which requests are 

inserted in and removed from the lists. The request lists are maintained in sorted order of increasing starting-sector 

number. When a request is accepted for processing by a block-device driver, it is not removed from the list. It is 

removed only after the I/O is complete, at which point the driver continues with the next request in the list, even if new 

requests have been inserted in the list before the active request. As new I/O requests are made, the request manager 

attempts to merge requests in the lists. 

 

Linux kernel version 2.6 introduced a new I/O scheduling algorithm. Although a simple elevator algorithm 
remains available, the default I/O scheduler is now the Completely Fair Queueing (CFQ) scheduler. The CFQ I/O 

scheduler is fundamentally different from elevator-based algorithms. Instead of sorting requests into a list, CFQ 
maintains a set of lists by default, one for each process. Requests originating from a process go in that process’s list. 

For example, if two processes are issuing I/O requests, CFQ will maintain two separate lists of requests, one for each 
process. The lists are maintained according to the C-SCAN algorithm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Character Devices  
A character-device driver can be almost any device driver that does not offer random access to fixed blocks of 

data. Any character-device drivers registered to the Linux kernel must also register a set of functions that implement 
the file I/O operations that the driver can handle. The kernel performs almost no preprocessing of a file read or write 

request to a character device. It simply passes the request to the device in question and lets the device deal with the 
request.  

The main exception to this rule is the special subset of character-device drivers that implement terminal 
devices. The kernel maintains a standard interface to these drivers by means of a set of tty struct structures. Each of 
these structures provides buffering and flow control on the data stream from the terminal device and feeds those data to 
a line discipline.   

A line discipline is an interpreter for the information from the terminal device. The most common line 

discipline is the tty discipline, which glues the terminal’s data stream onto the standard input and output streams of a 

user’s running processes, allowing those processes to communicate directly with the user’s terminal. This job is 
complicated by the fact that several such processes may be running simultaneously, and the tty line discipline is 

responsible for attaching and detaching the terminal’s input and output from the various processes connected to it as 
those processes are suspended or awakened by the user.  

Other line disciplines also are implemented that have nothing to do with I/O to a user process. The PPP and 

SLIP networking protocols are ways of encoding a networking connection over a terminal device such as a serial line. 

These protocols are implemented under Linux as drivers that at one end appear to the terminal system as line 

disciplines and at the other end appear to the networking system as network-device drivers. After one of these line   
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disciplines has been enabled on a terminal device, any data appearing on that terminal will be routed directly to the 

appropriate network-device driver. 

 

Interprocess Communication  
Linux provides a rich environment for processes to communicate with each other. Communication may be just a matter 
of letting another process know that some event has occurred, or it may involve transferring data from one process to 
another. 

 

Synchronization and Signals  
The standard Linux mechanism for informing a process that an event has occurred is the signal. Signals can be 

sent from any process to any other process, with restrictions on signals sent to processes owned by another user. 
However, a limited number of signals are available, and they cannot carry information. Only the fact that a signal has 

occurred is available to a process. Signals are not generated only by processes. The kernel also generates signals 

internally. For example, it can send a signal to a server process when data arrive on a network channel, to a parent 
process when a child terminates, or to a waiting process when a timer expires.  

Internally, the Linux kernel does not use signals to communicate with processes running in kernel mode. If a 
kernel-mode process is expecting an event to occur, it will not use signals to receive notification of that event. Rather, 

communication about incoming asynchronous events within the kernel takes place through the use of scheduling states 
and wait queue structures. These mechanisms allow kernel-mode processes to inform one another about relevant 

events, and they also allow events to be generated by device drivers or by the networking system. Whenever a process 
wants to wait for some event to complete, it places itself on a wait queue associated with that event and tells the 

scheduler that it is no longer eligible for execution. Once the event has completed, every process on the wait queue will 
be awoken. This procedure allows multiple processes to wait for a single event. For example, if several processes are 

trying to read a file from a disk, then they will all be awakened once the data have been read into memory successfully.  
 

Passing of Data among Processes  
Linux offers several mechanisms for passing data among processes. The stan-dard UNIX pipe mechanism 

allows a child process to inherit a communication channel from its parent; data written to one end of the pipe can be 

read at the other. Under Linux, pipes appear as just another type of inode to virtual file system software, and each pipe 

has a pair of wait queues to synchronize the reader and writer. UNIX also defines a set of networking facilities that can 

send streams of data to both local and remote processes. Another process communications method, shared memory, 

offers an extremely fast way to communicate large or small amounts of data. Any data written by one process to a 

shared memory region can be read immediately by any other process that has mapped that region into its address space. 

The main disadvantage of shared memory is that, on its own, it offers no synchronization. A process can neither ask the 

operating system whether a piece of shared memory has been written to nor suspend execution until such a write 

occurs. Shared memory becomes particularly powerful when used in conjunction with another interprocess-

communication mechanism that provides the missing synchronization.  
A shared-memory region in Linux is a persistent object that can be created or deleted by processes. Such an 

object is treated as though it were a small, independent address space. The Linux paging algorithms can elect to page 

shared-memory pages out to disk, just as they can page out a process’s data pages. The shared-memory object acts as a 
backing store for shared-memory regions, just as a file can act as a backing store for a memory-mapped memory 

region. When a file is mapped into a virtual address space region, then any page faults that occur because the 

appropriate page of the file to be mapped into virtual memory. Similarly, shared-memory mappings direct page faults 
to map in pages from a persistent shared-memory object. Also just as for files, shared-memory objects remember their 

contents even if no processes are currently mapping them into virtual memory. 

 

Mobile OS - iOS and Android  
In The Anatomy of an iPhone 4 we looked at the hardware that is contained within an iPhone 4 device. When 

we develop apps for the iPhone Apple does not allow us direct access to any of this hardware. In fact, all hardware 
interaction takes place exclusively through a number of different layers of software that act as intermediaries between 
the application code and device hardware. These layers make up what is known as an operating system. In the case of 
the iPhone, this operating system is known as iOS.  
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In order to gain a better understanding of the iPhone development environment, this chapter will look in detail 
at the different layers that comprise the iOS operating system and the frameworks that allow us, as developers, to write 
iPhone applications. 

 

iPhone OS becomes iOS  
Prior to the release of the first iPad in 2010, the operating system running on the iPhone was referred to as 

iPhone OS. Given that the operating system used for the iPad is essentially the same as that on the iPhone it didn’t 

make much sense to name it iPad OS. Instead, Apple decided to adopt a more generic and non-device specific name for 
the operating system. Given Apple’s predilection for names prefixed with the letter ‘i’ (iTunes, iBookstore, iMac etc) 

the logical choice was, of course, iOS. Unfortunately, iOS is also the name used by Cisco for the operating system on 
its routers (Apple, it seems, also has a predilection for ignoring trademarks). When performing an internet search for 

iOS, therefore, be prepared to see large numbers of results for Cisco’s iOS which have absolutely nothing to do with 
Apple’s iOS. 

 

An Overview of the iOS 4 Architecture  
As previously mentioned, iOS consists of a number of different software layers, each of which provides 

programming frameworks for the development of applications that run on top of the underlying hardware. These 
operating system layers can be presented diagrammatically as illustrated in the following figure:  
 
 
 
 
 
 
 
 
 
 
 
 

 

some diagrams designed to graphically depict the iOS software stack show an additional box positioned above the 

Cocoa Touch layer to indicate the applications running on the device. In the above diagram we have not done so since 
this would suggest that the only interface available to the app is Cocoa Touch. In practice, an app can directly call 
down any of the layers of the stack to perform tasks on the physical device.  

That said, however, each operating system layer provides an increasing level of abstraction away from the 
complexity of working with the hardware. As an iOS developer you should, therefore, always look for solutions to your 

programming goals in the frameworks located in the higher level iOS layers before resorting to writing code that 
reaches down to the lower level layers. In general, the higher level of layer you program to, the less effort and fewer 

lines of code you will have to write to achieve your objective. And as any veteran programmer will tell you, the less 
code you have to write the less opportunity you have to introduce bugs.  
Now that we have identified the various layers that comprise iOS 4 we can now look in more detail at the services 
provided by each layer and the corresponding frameworks that make those services available to us as application 
developers. 

 

The Cocoa Touch Layer  
The Cocoa Touch layer sits at the top of the iOS stack and contains the frameworks that are most commonly 

used by iPhone application developers. Cocoa Touch is primarily written in Objective-C, is based on the standard Mac 
OS X Cocoa API (as found on Apple desktop and laptop computers) and has been extended and modified to meet the 
needs of the iPhone. The Cocoa Touch layer provides the following frameworks for iPhone app development:  
UIKit Framework (UIKit.framework)  

The UIKit framework is a vast and feature rich Objective-C based programming interface. It is, without question, 
the framework with which you will spend most of your time working. Entire books could, and probably will, be written 
about the UIKit framework alone. Some of the key features of UIKit are as follows:  

 User interface creation and management (text fields, buttons, labels, colors, fonts etc)
 Application lifecycle management 
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 Application event handling (e.g. touch screen user interaction)

 Multitasking

 Wireless Printing

 Data protection via encryption

 Cut, copy, and paste functionality

 Web and text content presentation and management

 Data handling

 Inter-application integration

 Push notification in conjunction with Push Notification Service
 Local notifications (a mechanism whereby an application running in the background can gain the user’s attention)

 Accessibility

 Accelerometer, battery, proximity sensor, camera and photo library interaction.

 Touch screen gesture recognition

 File sharing (the ability to make application files stored on the device available via iTunes)
 Blue tooth based peer to peer connectivity between devices

 Connection to external displays 
Map Kit Framework (MapKit.framework)  

If you have spent any appreciable time with an iPhone then the chances are you have needed to use the Maps 
application more than once, either to get a map of a specific area or to generate driving directions to get you to your 

intended destination. The Map Kit framework provides a programming interface that enables you to build map based 
capabilities into your own applications. This allows you to, amongst other things, display scrollable maps for any 

location, display the map corresponding to the current geographical location of the device and annotate the map in a 
variety of ways.  
Push Notification Service  

The Push Notification Service allows applications to notify users of an event even when the application is not 
currently running on the device. Since the introduction of this service it has most commonly been used by news based 

applications. Typically when there is breaking news the service will generate a message on the device with the news 
headline and provide the user the option to load the corresponding news app to read more details. This alert is typically 

accompanied by an audio alert and vibration of the device. This feature should be used sparingly to avoid annoying the 
user with frequent interruptions.  
Message UI Framework (MessageUI.framework)  

The Message UI framework provides everything you need to allow users to compose and send email messages 
from within your application. In fact, the framework even provides the user interface elements through which the user 
enters the email addressing information and message content. Alternatively, this information can be pre-defined within 
your application and then displayed for the user to edit and approve prior to sending.  
Address Book UI Framework (AddressUI.framework)  

Given that a key function of the iPhone is as a communications device and digital assistant it should not come 
as too much of a surprise that an entire framework is dedicated to the integration of the address book data into your 
own applications. The primary purpose of the framework is to enable you to access, display, edit and enter contact 

information from the iPhone address book from within your own application.  
Game Kit Framework (GameKit.framework)  

The Game Kit framework provides peer-to-peer connectivity and voice communication between multiple 

devices and users allowing those running the same app to interact. When this feature was first introduced it was 
anticipated by Apple that it would primarily be used in multi-player games (hence the choice of name) but the possible 
applications for this feature clearly extend far beyond games development.  
iAd Framework (iAd.framework)  

The purpose of the iAd Framework is to allow developers to include banner advertising within their 
applications. All advertisements are served by Apple’s own ad service.  
Event Kit UI Framework  

The Event Kit UI framework was introduced in iOS 4 and is provided to allow the calendar events to be 
accessed and edited from within an application.  
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The iOS Media Layer  
The role of the Media layer is to provide iOS with audio, video, animation and graphics capabilities. As with 

the other layers comprising the iOS stack, the Media layer comprises a number of frameworks that may be utilized 
when developing iPhone apps. In this section we will look at each one in turn.  
Core Video Framework (CoreVideo.framework)  

A new framework introduced with iOS 4 to provide buffering support for the Core Media framework. Whilst 
this may be utilized by application developers it is typically not necessary to use this framework.  
Core Text Framework (CoreText.framework)  

The iOS Core Text framework is a C-based API designed to ease the handling of advanced text layout and font 
rendering requirements.  
Image I/O Framework (ImageIO.framework)  

The Image IO framework, the purpose of which is to facilitate the importing and exporting of image data and 
image metadata, was introduced in iOS 4. The framework supports a wide range of image formats including PNG, 
JPEG, TIFF and GIF.  
Assets Library Framework (AssetsLibrary.framework)  

The Assets Library provides a mechanism for locating and retrieving video and photo files located on the 
iPhone device. In addition to accessing existing images and videos, this framework also allows new photos and videos 
to be saved to the standard device photo album.  
Core Graphics Framework (CoreGraphics.framework)  

The iOS Core Graphics Framework (otherwise known as the Quartz 2D API) provides a lightweight two 
dimensional rendering engine. Features of this framework include PDF document creation and presentation, vector 
based drawing, transparent layers, path based drawing, anti-aliased rendering, color manipulation and management, 
image rendering and gradients. Those familiar with the Quartz 2D API running on MacOS X will be pleased to learn 
that the implementation of this API is the same on iOS.  
Quartz Core Framework (QuartzCore.framework)  

The purpose of the Quartz Core framework is to provide animation capabilities on the iPhone. It provides the 
foundation for the majority of the visual effects and animation used by the UIKit framework and provides an 
Objective-C based programming interface for creation of specialized animation within iPhone apps.  
OpenGL ES framework (OpenGLES.framework)  

For many years the industry standard for high performance 2D and 3D graphics drawing has been OpenGL. 
Originally developed by the now defunct Silicon Graphics, Inc (SGI) during the 1990s in the form of GL, the open 
version of this technology (OpenGL) is now under the care of a non-profit consortium comprising a number of major 
companies including Apple, Inc., Intel, Motorola and ARM Holdings.  

OpenGL for Embedded Systems (ES) is a lightweight version of the full OpenGL specification designed 
specifically for smaller devices such as the iPhone.  
iOS 3 or later supports both OpenGL ES 1.1 and 2.0 on certain iPhone models (such as the iPhone 3GS and iPhone 4). 

Earlier versions of iOS and older device models support only OpenGL ES version 1.1.  
iOS Audio Support  

iOS is capable of supporting audio in AAC, Apple Lossless (ALAC), A-law, IMA/ADPCM, Linear PCM, µ-
law, DVI/Intel IMA ADPCM, Microsoft GSM 6.10 and AES3-2003 formats through the support provided by the 
following frameworks.  
AV Foundation framework (AVFoundation.framework) 

An Objective-C based framework designed to allow the playback, recording and management of audio content.  
Core Audio Frameworks (CoreAudio.framework, AudioToolbox.framework and AudioUnit.framework)  

The frameworks that comprise Core Audio for iOS define supported audio types, playback and recording of 
audio files and streams and also provide access to the device’s built-in audio processing units.  
Open Audio Library (OpenAL)  

OpenAL is a cross platform technology used to provide high-quality, 3D audio effects (also referred to as 
positional audio). Positional audio can be used in a variety of applications though is typically using to provide sound 
effects in games.  
Media Player framework (MediaPlayer.framework)  

The iOS Media Player framework is able to play video in .mov, .mp4, .m4v, and .3gp formats at a variety of 
compression standards, resolutions and frame rates.  
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Core Midi Framework (CoreMIDI.framework)  
Introduced in iOS 4, the Core MIDI framework provides an API for applications to interact with MIDI 

compliant devices such as synthesizers and keyboards via the iPhone’s dock connector. 

 

The iOS Core Services Layer  
<google>IOSBOX</google> The iOS Core Services layer provides much of the foundation on which the 

previously referenced layers are built and consists of the following frameworks.  
Address Book framework (AddressBook.framework)  

The Address Book framework provides programmatic access to the iPhone Address Book contact database 
allowing applications to retrieve and modify contact entries. 
 CFNetwork Framework (CFNetwork.framework)



 
The CFNetwork framework provides a C-based interface to the TCP/IP networking protocol stack and low 

level access to BSD sockets. This enables application code to be written that works with HTTP, FTP and Domain 
Name servers and to establish secure and encrypted connections using Secure Sockets Layer (SSL) or Transport Layer 
Security (TLS). 
 Core Data Framework (CoreData.framework)



This framework is provided to ease the creation of data modeling and storage in Model-View-Controller (MVC) 
based applications. Use of the Core Data framework significantly reduces the amount of code that needs to be 
written to perform common tasks when working with structured data in an application. 

 Core Foundation Framework (CoreFoundation.framework)


The Core Foundation is a C-based Framework that provides basic functionality such as data types, string 
manipulation, raw block data management, URL manipulation, threads and run loops, date and times, basic XML 
manipulation and port and socket communication. Additional XML capabilities beyond those included with this 
framework are provided via the libXML2 library. Though this is a C-based interface, most of the capabilities of the 
Core Foundation framework are also available with Objective-C wrappers via the Foundation Framework. 

 Core Media Framework (CoreMedia.framework)


The Core Media framework is the lower level foundation upon which the AV Foundation layer is built. Whilst 
most audio and video tasks can, and indeed should, be performed using the higher level AV Foundation 
framework, access is also provided for situations where lower level control is required by the iOS application 
developer. 

 Core Telephony Framework (CoreTelephony.framework)


The iOS Core Telephony framework is provided to allow applications to interrogate the device for information 
about the current cell phone service provider and to receive notification of telephony related events. 

 EventKit Framework (EventKit.framework)


An API designed to provide applications with access to the calendar and alarms on the device. 
 Foundation Framework (Foundation.framework)



The Foundation framework is the standard Objective-C framework that will be familiar to those that have 
programmed in Objective-C on other platforms (most likely Mac OS X). Essentially, this consists of Objective-C 
wrappers around much of the C-based Core Foundation Framework. 

 Core Location Framework (CoreLocation.framework)


The Core Location framework allows you to obtain the current geographical location of the device (latitude and 
longitude) and compass readings from with your own applications. The method used by the device to provide 
coordinates will depend on the data available at the time the information is requested and the hardware support 
provided by the particular iPhone model on which the app is running (GPS and compass are only featured on 
recent models). This will either be based on GPS readings, Wi-Fi network data or cell tower triangulation (or some 
combination of the three). 

 Mobile Core Services Framework (MobileCoreServices.framework)


The iOS Mobile Core Services framework provides the foundation for Apple’s Uniform Type Identifiers (UTI) 
mechanism, a system for specifying and identifying data types. A vast range of predefined identifiers have been 
defined by Apple including such diverse data types as text, RTF, HTML, JavaScript, PowerPoint .ppt files, 
PhotoShop images and MP3 files.  
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 Store Kit Framework (StoreKit.framework)


The purpose of the Store Kit framework is to facilitate commerce transactions between your application and the 
Apple App Store. Prior to version 3.0 of iOS, it was only possible to charge a customer for an app at the point that 
they purchased it from the App Store. iOS 3.0 introduced the concept of the “in app purchase” whereby the user 
can be given the option make additional payments from within the application. This might, for example, involve 
implementing a subscription model for an application, purchasing additional functionality or even buying a faster 
car for you to drive in a racing game. 



 SQLite library


Allows for a lightweight, SQL based database to be created and manipulated from within your iPhone application. 
 System Configuration Framework (SystemConfiguration.framework)



The System Configuration framework allows applications to access the network configuration settings of the 
device to establish information about the “reachability” of the device (for example whether Wi-Fi or cell 
connectivity is active and whether and how traffic can be routed to a server). 

 Quick Look Framework (QuickLook.framework)


 
One of the many new additions included in iOS 4, the Quick Look framework provides a useful mechanism for 

displaying previews of the contents of files types loaded onto the device (typically via an internet or network 
connection) for which the application does not already provide support. File format types supported by this framework 
include iWork, Microsoft Office document, Rich Text Format, Adobe PDF, Image files, public.text files and comma 
separated (CSV).  
 The iOS Core OS Layer



The Core OS Layer occupies the bottom position of the iOS stack and, as such, sits directly on top of the device 
hardware. The layer provides a variety of services including low level networking, access to external accessories 
and the usual fundamental operating system services such as memory management, file system handling and 
threads. 



 Accelerate Framework (Accelerate.framework)


Introduced with iOS 4, the Accelerate Framework provides a hardware optimized C-based API for performing 
complex and large number math, vector, digital signal processing (DSP) and image processing tasks and 
calculations. 



 External Accessory framework (ExternalAccessory.framework)


Provides the ability to interrogate and communicate with external accessories connected physically to the iPhone 
via the 30-pin dock connector or wirelessly via Bluetooth. 



 Security Framework (Security.framework)


The iOS Security framework provides all the security interfaces you would expect to find on a device that can 
connect to external networks including certificates, public and private keys, trust policies, keychains, encryption, 
digests and Hash-based Message Authentication Code (HMAC). 



 System (LibSystem)


As we have previously mentioned, the iOS is built upon a UNIX-like foundation. The System component of the 
Core OS Layer provides much the same functionality as any other UNIX like operating system. This layer includes 
the operating system kernel (based on the Mach kernel developed by Carnegie Mellon University) and device 
drivers. The kernel is the foundation on which the entire iOS is built and provides the low level interface to the 
underlying hardware. Amongst other things the kernel is responsible for memory allocation, process lifecycle 

management, input/output, inter-process communication, thread management, low level networking, file system 
access and thread management. 



As an app developer your access to the System interfaces is restricted for security and stability reasons. Those 

interfaces that are available to you are contained in a C-based library called LibSystem. As with all other layers of 
the iOS stack, these interfaces should be used only when you are absolutely certain there is no way to achieve the 
same objective using a framework located in a higher iOS layer.  

 

   
 


