
Unit – I: Basic Structure of Computer System P a g e | 1.1

CS8491 – Computer Architecture

Components Of Computer System

1. Input Unit

2. Memory Unit

2.1. Primary Memory

2.1.1. Word

2.1.2. Word Length

2.1.3. Basic Operation

2.1.4. Address

2.2. Secondary Memory

2.2.1. Access Time

2.3. Arithmetic And Logic Unit

2.3.1. Registers

2.3.2. One register – One word

2.4. Output Unit

2.5. Control unit

2.5.1. Timing and synchronization

Unit – I
Basic structure of computer system

Functional Units – Basic Operational Concepts – Performance – Instructions: Language
ofthe Computer – Operations, Operands – Instruction representation – Logical
operations – decision making – MIPS Addressing.

1. FUNCTIONAL UNITS

A computer consists of five functionally

independent main parts: input, memory,

arithmetic and logic, output, and control

units.

1.1. INPUT UNIT

 Computers accept coded

information through input units.

 Most common input device is the

keyboard.

 When a key is pressed, the

corresponding letter or digit is

automatically translated into its

corresponding binary code and

transmitted to the processor.

Other kinds of input devices are

 Touchpad,

 Mouse,

 Joystick,

 Trackball.

 Microphones – used to capture

audio input which is then sampled and

converted into digital codes for storage and

processing.

 Cameras – used to capture video input and it is sampled similar to microphone

1.2. MEMORY UNIT

 The function of the memory unit is to store programs and data. There are two classes of

storage, called primary and secondary.

1.2.1. PRIMARY MEMORY

 It is also called main memory. It is a fast memory that operates at electronic speeds.

P a g e | 1.2 Unit – I: Basic Structure of Computer Sysem

CS8491 – Computer Architecture

 Programs must be stored in this memory while they are being executed. The memory consists

of a large number of semiconductor storage cells, each cell can store one bit of information.

 These cells are rarely read or written individually. In general, they are handled in groups of

fixed size called WORDS . The memory is organized so that one word can be stored or

retrieved in one basic operation .

 The number of bits in each word is referred to as the WORD LE NGTH of the computer, typically

16, 32, or 64 bits.

 To provide easy access to any word in the memory, a unique ADDRESS is associated with each

word location.

 Addresses are consecutive numbers, starting from 0, that identify locations. A particular word

is accessed by specifying its address and issuing a control command to the memory that starts

the storage or retrieval process.

1.2.2. SECONDARY STORAGE

 Primary memory is expensive and does not retain information when power is turned off. Thus

additional, less expensive, permanent secondary storage is used when large amounts of data

and many programs have to be stored, for information that is accessed infrequently.

 Access times for secondary storage are longer than for primary memory.

 Some secondary storage devices are magnetic disks, optical disks (DVD and CD), and flash

memory devices.

1.3. ARITHMETIC AND LOGIC UNIT

 Most computer operations are executed in the arithmetic and logic unit (ALU) of the

processor.

 For example: If two numbers located in the memory are to be added, they are brought into the

processor, and the addition is carried out by the ALU. The sum may be stored in the memory

or kept in the processor for immediate use.

 When operands are brought into the processor, they are stored in high-speed storage elements

called REGISTERS .

 One register can store one word of data.

 Access times to registers are even shorter than access times to the cache unit on the processor

chip.

1.4. OUTPUT UNIT

 The function of output device is to send processed results to the outside world.

Unit – I: Basic Structure of Computer System P a g e | 1.3

CS8491 – Computer Architecture

 Most common example of output device is a printer. Printers are mechanical devices, and are

slow compared to the electronic speed of a processor.

 Some units, such as graphic displays, provide both output function, and input function,

through touchscreen capability. The dual role of such units is the reason for using the single

name input/output (I/O) unit in many cases.

1.5. CONTROL UNIT

 The memory, arithmetic and logic, and I/O units store and process information and perform

input and output operations.

 Coordinating the operation of these units is the responsibility of the control unit.

 Control circuits are responsible for generating the timing signals that control the transfers

and determine when a given action is to take place.

 Data transfers between the processor and the memory are also managed by the control unit

through timing signals.

 Most of the control circuitry is physically distributed throughout the computer. A large set of

control lines (wires) carries the signals used for TIMING AND SY NC HRONI Z ATION of events in all

units.

2. BASIC OPERATIONAL CONCEPTS

To perform a given task an appropriate program consisting of a list of instructions is

stored in the memory. Individual instructions are brought from the memory into the

processor, which executes the specified operations. Data to be stored are also stored in

the memory.

Examples: - Add LOCA, R0

This instruction adds the operand at memory location LOCA, to operand in

register R0 & places the sum into register. This instruction requires the performance of

several steps,

1. First the instruction is fetched from the memory into the processor.

2. The operand at LOCA is fetched and added to the contents of R0

3. Finally the resulting sum is stored in the register R0

The preceding add instruction combines a memory access operation with an ALU

Operations. In some other type of computers, these two types of operations are performed

by separate instructions for performance reasons.

Load LOCA, R1

Add R1, R0

P a g e | 1.4 Unit – I: Basic Structure of Computer Sysem

CS8491 – Computer Architecture

Transfers between the memory and the processor are started by sending the address of

the memory location to be accessed to the memory unit and issuing the appropriate

control signals. The data are then transferred to or from the memory.

Fig 1.1 : Connections between the processor and the memory

The fig shows how memory & the processor can be connected. In addition to the

ALU & the control circuitry, the processor contains a number of registers used for several

different purposes.

The instruction register (IR):- Holds the instructions that is currently being executed.

Its output is available for the control circuits which generates the timing signals that

control the various processing elements in one execution of instruction.

The program counter PC:-

This is another specialized register that keeps track of execution of a program. It

contains the memory address of the next instruction to be fetched and executed.

Besides IR and PC, there are n-general purpose registers R0 through Rn-1

The other two registers which facilitate communication with memory are: -

1. MAR – (Memory Address Register):- It holds the address of the location to be

accessed.

2. MDR – (Memory Data Register):- It contains the data to be written into or read

out of the address location.

Unit – I: Basic Structure of Computer System P a g e | 1.5

CS8491 – Computer Architecture

Operating steps are

1. Programs reside in the memory & usually get these through the I/P unit.

2. Execution of the program starts when the PC is set to point at the first instruction

of the program.

3. Contents of PC are transferred to MAR and a Read Control Signal is sent to the

memory.

4. After the time required to access the memory elapses, the address word is read out

of the memory and loaded into the MDR.

5. Now contents of MDR are transferred to the IR & now the instruction is ready to

be decoded and executed.

6. If the instruction involves an operation by the ALU, it is necessary to obtain the

required operands.

7. An operand in the memory is fetched by sending its address to MAR & Initiating

a read cycle.

8. When the operand has been read from the memory to the MDR, it is transferred

 from MDR to the ALU.

9. After one or two such repeated cycles, the ALU can perform the desired

operation.

10. If the result of this operation is to be stored in the memory, the result is sent to

MDR.

11. Address of location where the result is stored is sent to MAR & a write cycle is

initiated.

12. The contents of PC are incremented so that PC points to the next instruction that

is to be executed.

Normal execution of a program may be preempted (temporarily interrupted) if

some devices require urgent servicing, to do this one device raises an Interrupt signal.

An interrupt is a request signal from an I/O device for service by the processor.

The processor provides the requested service by executing an appropriate interrupt

service routine.

The Diversion may change the internal stage of the processor its state must be

saved in the memory location before interruption. When the interrupt-routine service is

completed the state of the processor is restored so that the interrupted program may

continue.

P a g e | 1.6 Unit – I: Basic Structure of Computer Sysem

CS8491 – Computer Architecture

Performance of A Computer

 Size and Complexity

 performance improvement techniques

1. Defining Performance

 Response time

 Throughput

2. Relative Performance

3. Measuring Performance

 clock time

4. CPU Execution Time

4.1. Types of CPU time

 User CPU time

 System CPU time

 System clock

 Clock cycles

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑥 =
1

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑥

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐴

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐵
=

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝐵

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝐴

5. Clock period

6. CPU Performance and its Factors

7. Instruction Performance

8. Clock Cycles per Instruction (CPI)

9. CPU Performance Equation

 Measuring CPU Execution Time

 Measuring Clock Cycle Time

 Measuring Instruction Count

𝐶𝑃𝑈 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎 𝑝𝑟𝑜𝑔𝑟𝑎𝑚

=
𝐶𝑃𝑈 𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒 𝑓𝑜𝑟 𝑎 𝑝𝑟𝑜𝑔𝑟𝑎𝑚

𝐶𝑙𝑜𝑐𝑘 𝑅𝑎𝑡𝑒

𝐶𝑃𝑈 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠

= 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑎 𝑝𝑟𝑜𝑔𝑟𝑎𝑚

× 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠 𝑝𝑒𝑟 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

𝐶𝑃𝑈 𝑇𝑖𝑚𝑒 =
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡 × 𝐶𝑃𝐼

𝐶𝑙𝑜𝑐𝑘 𝑅𝑎𝑡𝑒

3. PERFORMANCE OF A COMPUTER

Determining the performance of computers

can be tough. Main reasons for this

difficulty are,

 Size and Complexity of

modern software systems,

 Wide range of performance

improvement techniques

used by hardware designers.

3.1. DEFINING PERFORMANCE

If a program is run on two different desktop

computers, in general the faster one is the

desktop computer that finishes the job done

first.

Consider a datacenter that had several

servers running jobs submitted by many

users, in general the faster computer is the

one that completed the most jobs during a

day.

INDIV IDUAL computer users are interested in reducing response time .

DAT AC ENTE R MANAGE RS are often interested in increasing throughput

3.1.1. RESPONSE TIME

It is also called as EXECUTIO N T IME . The total time

required for the computer to complete a task,

including disk accesses, memory accesses, I/O

activities, operating system overhead, CPU

execution time, etc.

3.1.2. THROUGHPUT

It is also called BANDWIDTH . It is the number of

tasks completed per unit time.

To maximize performance, we should minimize

response time or execution time for some task. We

can relate performance and execution time for a

computer X as, as,

𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆𝒙 =
𝟏

𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑻𝒊𝒎𝒆𝒙

Unit – I: Basic Structure of Computer System P a g e | 1.7

CS8491 – Computer Architecture

Consider two computers X and Y, if the performance of X is greater than the performance of Y, then

𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆𝒙 > 𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆𝒚

𝟏

𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑻𝒊𝒎𝒆𝒙
>

𝟏

𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑻𝒊𝒎𝒆𝒚

𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑻𝒊𝒎𝒆𝒚 > 𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑻𝒊𝒎𝒆𝒙

The execution time on Y is more than that of X, if X is faster than Y.

3.1.3. RELATIVE PERFORMANCE

In order to calculate the relative performance consider the following example:

If computer A runs a program in 10 seconds and computer B runs the same program in 15 seconds,

how much faster is A than B.

𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆𝑨

𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆𝑩
=

𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑻𝒊𝒎𝒆𝑩

𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑻𝒊𝒎𝒆𝑨

Thus the performance ratio is

𝟏𝟓/𝟏𝟎 = 𝟏. 𝟓

So A is faster than B in 1.5 times

𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆𝑨

𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆𝑩
= 𝟏. 𝟓

PER FORMANC E AND EXECU T I ON T IME ARE R ECIPR O CALS , increasing performance decreases execution

time.

3.2. MEASURING PERFORMANCE

Time is used to measure performance of a computer, the computer that performs the same amount of

work in the least time is considered as faster.

Program execution time is measure in SECONDS PER PROGRAM .

The most common definition of time is wall clock time, response time or elapsed

time .

Processor may work on several programs simultaneously in order to optimize throughput instead of

minimizing the elapsed time for one program.

We need to differentiate the elapsed time and amount of time which the processor is working on the

program. CPU execution time is used to differentiate this.

P a g e | 1.8 Unit – I: Basic Structure of Computer Sysem

CS8491 – Computer Architecture

3.2.1. CPU EXECUTION TIME

CPU execution time also called CPU time. It is defined as the actual time the CPU spends computing

for a specific task.

3.2.2. TYPES OF CPU TIME

CPU time can be classified into two types

1. User CPU time - CPU time spent in the program

2. System CPU time - CPU time spent in the operating system performing tasks on behalf

of the program.

Differentiating between system and user CPU time is difficult to do accurately, to increase the system

performance the computer designers must know how fast the hardware can perform

basic functions .

3.2.3. SYSTEM CLOCK

All computers are constructed using a CLOCK that determines when events take place in the hardware.

3.2.4. CLOCK CYCLES

Clock cycles also called tick, clock tick, clock period, clock or cycle. Clock cycle is the time for

one clock period usually of the processor clock, which runs at constant rate.

3.2.5. CLOCK PERIOD

The length of each clock cycle is known as CLOCK PERI OD .

3.3. CPU PERFORMANCE AND ITS FACTORS

Users and designers have different metrics to measure the performance.

In general CPU performance is a one of metrics for measuring the performance. To know the CPU

performance we must find the CPU execution time.

𝑪𝑷𝑼 𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑻𝒊𝒎𝒆 𝒇𝒐𝒓 𝒂 𝒑𝒓𝒐𝒈𝒓𝒂𝒎

= 𝑪𝑷𝑼 𝑪𝒍𝒐𝒄𝒌 𝑪𝒚𝒄𝒍𝒆 𝒇𝒐𝒓 𝒂 𝒑𝒓𝒐𝒈𝒓𝒂𝒎 × 𝑪𝒍𝒐𝒄𝒌 𝑪𝒚𝒄𝒍𝒆 𝑻𝒊𝒎𝒆

𝑪𝒍𝒐𝒄𝒌 𝑪𝒚𝒄𝒍𝒆 𝑻𝒊𝒎𝒆 =
𝟏

𝑪𝒍𝒐𝒄𝒌 𝑹𝒂𝒕𝒆

𝑪𝑷𝑼 𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏 𝑻𝒊𝒎𝒆 𝒇𝒐𝒓 𝒂 𝒑𝒓𝒐𝒈𝒓𝒂𝒎 =
𝑪𝑷𝑼 𝑪𝒍𝒐𝒄𝒌 𝑪𝒚𝒄𝒍𝒆 𝒇𝒐𝒓 𝒂 𝒑𝒓𝒐𝒈𝒓𝒂𝒎

𝑪𝒍𝒐𝒄𝒌 𝑹𝒂𝒕𝒆

It is clear that the hardware designer can IMPROVE PERFORMANCE by reducing the number of

clock cycles required for a program or the length of the clock cycle .

Unit – I: Basic Structure of Computer System P a g e | 1.9

CS8491 – Computer Architecture

3.4. INSTRUCTION PERFORMANCE

Performance equations mentioned above does not include any reference to the number of instructions

needed for the program. But the execution time depends on the number of instructions in a program,

so the equation is modified as follows.

𝑪𝑷𝑼 𝒄𝒍𝒐𝒄𝒌 𝒄𝒚𝒄𝒍𝒆𝒔

= 𝑰𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏𝒔 𝒇𝒐𝒓 𝒂 𝒑𝒓𝒐𝒈𝒓𝒂𝒎 × 𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒄𝒍𝒐𝒄𝒌 𝒄𝒚𝒄𝒍𝒆𝒔 𝒑𝒆𝒓 𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏

3.4.1. CLOCK CYCLES PER INSTRUCTION (CPI)

 Average number of clock cycles per instruction for a program or program fragment

 Different instructions may take different amounts of time depending on what they do.

 CPI is an average of all the instructions executed in the program.

 CPI provides one way of comparing two different implementations of the same instruction set

architecture.

3.5. CPU PERFORMANCE EQUATION

CPU performance equation in terms of instruction count (the number of instructions executed by the

program), CPI, and clock cycle time is as follows

𝑪𝑷𝑼 𝑻𝒊𝒎𝒆 = 𝑰𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏 𝒄𝒐𝒖𝒏𝒕 × 𝑪𝑷𝑰 × 𝑪𝒍𝒐𝒄𝒌 𝑪𝒚𝒄𝒍𝒆 𝑻𝒊𝒎𝒆

The clock rate is the inverse of clock cycle time

𝑪𝑷𝑼 𝑻𝒊𝒎𝒆 =
𝑰𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏 𝒄𝒐𝒖𝒏𝒕 × 𝑪𝑷𝑰

𝑪𝒍𝒐𝒄𝒌 𝑹𝒂𝒕𝒆

These formulas are used to compare two different implementations or to evaluate a

design alternative.

3.5.1. MEASURING CPU EXECUTION TIME

 We can measure the CPU execution time by running the program.

3.5.2. MEASURING CLOCK CYCLE TIME

 The clock cycle time is usually provided by the computer manufacturer.

3.5.3. MEASURING INSTRUCTION COUNT

 We can measure the instruction count by using software tools or by using a simulator of the

architecture or using hardware counters,

 Most of the processors have hardware counters, to record the number of instructions executed,

the average CPI, and other sources of performance loss.

 The instruction count depends on the architecture, but not on the exact implementation, so

instruction count can be measured without knowing all the details of the implementation.

 The CPI depends on a wide variety of design details in the computer, including both the

memory system and the processor structure.

P a g e | 1.10 Unit – I: Basic Structure of Computer Sysem

CS8491 – Computer Architecture

Components of performance Units of measure

CPU execution time for a program Seconds for the program

Instruction count Instructions executed for the program

Clock cycles per instruction (CPI) Average number of clock cycles per instruction

Clock cycle time Seconds per clock cycle

Consider the computer with three instruction classes and CPI measurement as given below and

instruction count for each instruction class for the same program from two different compilers

are given. Assume that the computer`s clock rate is 4GHz. Which code sequence will execute

faster according to execution time

Code from CPI for this Instruction Class

 A B C

CPI 1 2 3

Code from Instruction Count for each class

 A B C

Compiler 1 2 1 2

Compiler 2 4 1 1

[Nov/Dec 2014 – 6M]

𝑪𝑷𝑼 𝑻𝒊𝒎𝒆 =
𝑰𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏 𝒄𝒐𝒖𝒏𝒕 × 𝑪𝑷𝑰

𝑪𝒍𝒐𝒄𝒌 𝑹𝒂𝒕𝒆

COMPILER 1:

Total CPU time of Compiler 1 is the sum of CPU time of all Instruction Classes

𝑇𝑜𝑡𝑎𝑙 𝐶𝑃𝑈 𝑇𝑖𝑚𝑒𝐶1 = 𝐶𝑃𝑈 𝑇𝑖𝑚𝑒𝐶1𝐴 + 𝐶𝑃𝑈 𝑇𝑖𝑚𝑒𝐶1𝐵 + 𝐶𝑃𝑈 𝑇𝑖𝑚𝑒𝐶1𝐶

𝐶𝑃𝑈 𝑇𝑖𝑚𝑒𝐶1𝐴 =
2 × 1

4
=

1

2

𝐶𝑃𝑈 𝑇𝑖𝑚𝑒𝐶1𝐵 =
1 × 2

4
=

1

2

𝐶𝑃𝑈 𝑇𝑖𝑚𝑒𝐶1𝐶 =
2 × 3

4
=

3

2

𝑇𝑜𝑡𝑎𝑙 𝐶𝑃𝑈 𝑇𝑖𝑚𝑒𝐶1 =
1

2
+

1

2
+

3

2
=

5

2
= 2.5

COMPILER 2:

Total CPU time of Compiler 2 is the sum of CPU time of all Instruction Classes

𝑇𝑜𝑡𝑎𝑙 𝐶𝑃𝑈 𝑇𝑖𝑚𝑒𝐶2 = 𝐶𝑃𝑈 𝑇𝑖𝑚𝑒𝐶2𝐴 + 𝐶𝑃𝑈 𝑇𝑖𝑚𝑒𝐶2𝐵 + 𝐶𝑃𝑈 𝑇𝑖𝑚𝑒𝐶2𝐶

𝐶𝑃𝑈 𝑇𝑖𝑚𝑒𝐶2𝐴 =
4 × 1

4
= 1

𝐶𝑃𝑈 𝑇𝑖𝑚𝑒𝐶2𝐵 =
1 × 2

4
=

1

2

Unit – I: Basic Structure of Computer System P a g e | 1.11

CS8491 – Computer Architecture

Instructions

 Instruction Set

1. Operations of the Computer Hardware

 Only one operation

 Exactly Three Variables

Design Principle 1: Simplicity Favours Regularity

2. Compiling C statements

𝐶𝑃𝑈 𝑇𝑖𝑚𝑒𝐶2𝐶 =
2 × 1

4
=

1

2

𝑇𝑜𝑡𝑎𝑙 𝐶𝑃𝑈 𝑇𝑖𝑚𝑒𝐶2 = 1 +
1

2
+

1

2
= 2

The CPU time required for the execution various class of instruction by compiler 2 is less than that of

compiler 1, therefore compiler 1 is faster than compiler 2.

4. INSTRUCTIONS: LANGUAGE OF THE COMPUTER

An INSTRU CTION is a command given

to a computer hardware. The set of

all instructions understood by a

specific computer architecture is

called as INSTRUCTION SE T OF THE

AR CH ITECTUR E .

Each architecture has its own

instruction set, but the similarity between the instructions are very high because of the reason that all

the hardware work on similar principals and the basic instructions processed similarly.

Common goal of all the computer architects are as follows

 Find an easy language for building hardware

 Maximize Performance

 Minimize Cost and Energy

 Maintain simplicity in design

4.1. OPERATIONS OF THE COMPUTER HARDWARE

Every computer must be able to perform arithmetic operations.

Consider the following MIPS assembly language notation

add a, b, c

It instructs a computer to add the two variables b and c and to put their sum in a.

 Each MIPS arithmetic instruction performs ONLY ONE O PERATION

 It must always have EXACTL Y THR EE VARIAB LES .

For example, If we want to calculate the sum of four variables b, c, d, e and to place the result in the

variable a.

The following sequence of instructions adds the four variables:

add a, b, c # The sum of b and c is placed in a

add a, a, d # The sum of b, c, and d is now in a

add a, a, e # The sum of b, c, d, and e is now in a

P a g e | 1.12 Unit – I: Basic Structure of Computer Sysem

CS8491 – Computer Architecture

Thus, it takes three instructions to sum the four variables.

In MIPS assembly language comments always terminate at the end of a line.

Every instruction has exactly three operands, this rule is followed to keep the hardware simple

Design Principle 1: Simplicity favours regularity.

4.1.1. COMPILING C STATEMENTS

Consider this segment of a C program contains the five variables a, b, c, d, and e.

a = b + c;

d = a - e;

The above statement is compiled into MIPS assembly language as

add a, b, c

sub d, a, e

Consider a complex C program statement contains the five variables f, g, h, i, and j in the same

statement,

f = (g + h) – (i + j);

The compiler must break this statement into several assembly instructions, since only one operation is

performed per MIPS instruction.

The first MIPS instruction calculates the sum of g and h. We must place the result in a temporary

variable, called t0:

add t0, g, h # temporary variable t0 contains g + h

Next we need to calculate the sum of i and j.

The second instruction places the sum of i and j in another temporary variable called t1:

add t1, i, j # temporary variable t1 contains i + j

Next we need to subtract the second sum from the first sum and places the difference in the variable

f,

sub f, t0, t1 # f gets t0 – t1, which is (g + h) – (i + j)

5. OPERANDS OF THE COMPUTER HARDWARE

The operands that can be used for arithmetic instructions are restricted in MIPS assembly language.

Unit – I: Basic Structure of Computer System P a g e | 1.13

CS8491 – Computer Architecture

Operands of the Computer Hardware

1. The Registers

 Word

Design Principle 2: Smaller is faster.

2. MIPS Conventions

3. Memory Operands

 data transfer instructions

 memory address

3.1. Load Instruction

 load word

 alignment restriction

 big-endian addressing

3.2. Store Instruction

 store word

4. Constant or Immediate Operands

 Immediate instruction

 Common case fast

5.1. THE REGISTERS

Registers are used in hardware design, which the programmer can also use, these registers are used as

operands in MIPS. The size of a register in the MIPS architecture is 32 bits. The group of 32 bits is

called as WO R D .

A major difference between the variables of a programming language and registers is the limited

number of registers.

The three operands of MIPS arithmetic instructions must each be chosen from one of the available 32

registers each 32-bits.

The reason to limit the number of registers is

Design Principle 2: Smaller is faster.

A very large number of registers may

increase the clock cycle time simply

because it takes electronic signals

longer when they must travel farther.

5.1.1. MIPS CONVENTIONS

The MIPS convention is to use two-

character names following a dollar

sign to represent a register.

$𝒔𝟎, $𝒔𝟏, . .. for registers that

correspond to variables in C and Java

programs

$𝒕𝟎, $𝒕𝟏, . .. for temporary

registers needed to compile the

program into MIPS instructions.

Compiling C Statements

f = (g + h) – (i + j);

The above C statement is compiled into MIPS assembly language using registers as follows

add $t0, $s1, $s2 # register $t0 contains g + h

add $t1, $s3, $s4 # register $t1 contains i + j

sub $s0, $t0, $t1 # f gets $t0 – $t1, which is (g + h)–(i + j)

5.2. MEMORY OPERANDS

Programming languages have complex data structures, such as arrays and structures. These complex

data structures can contain more data elements than the total number of available registers in a

computer.

P a g e | 1.14 Unit – I: Basic Structure of Computer Sysem

CS8491 – Computer Architecture

The processor can keep only a small amount of data in registers data structures (arrays and structures)

are kept in memory.

Arithmetic operations occur only on registers in MIPS instructions; thus, MIPS must include

instructions that transfer data between memory and registers. Such instructions are called DATA

TRANS FER I NSTRUCTIO NS .

To access a word in memory, the instruction must know the

MEMORY ADDRESS . An address is a value used to define the

location of a specific data element within a memory array.

Memory is just a large, single-dimensional array, with the

address acting as the index to that array, starting at 0. The

address of the third data element is 2, and the value of Memory

[2] is 10.

5.2.1. LOAD INSTRUCTION

The data transfer instruction that copies data from memory to a register is generally called LOAD . The

actual MIPS name for this instruction is lw, standing for LOAD WORD .

The format of the load instruction is the name of the operation followed by the register to

be loaded, then a constant and register used to access memory. The sum of the constant portion of the

instruction and the contents of the second register forms the memory address.

Consider C assignment statement

g = h + A[8];

There is a single operation in this assignment statement, but one of the operands is in memory, so we

must first transfer A[8] to a register.

The address of this array element is the sum of the base of the array A, plus the number of the element.

The data should be placed in a temporary register for use in the next instruction.

Consider the base of the array A is in $S3

lw $t0, 32($s3) #Temporary reg $t0 gets A[8]

Continue the compilation as usual

add $s1, $s2, $t0 # g = h + A[8]

The constant in a data transfer instruction (32) is called the offset , and the register used

to store the base address ($s3) is called the base register .

The actual MIPS addresses for the words is the byte address of the third word is 32.In MIPS, words

must start at addresses that are multiples of 4. This requirement is called an ALIGNMENT R ESTRI CT IO N .

Unit – I: Basic Structure of Computer System P a g e | 1.15

CS8491 – Computer Architecture

Some computers use the address of the leftmost or “big end” byte as

the word address these computers are called big-endian and

other computers use the rightmost or “little end” byte and these

computers are called as little-endian . MIPS follows big-endian

addressing.

5.2.2. STORE INSTRUCTION

The instruction used to copy data from a register to memory is called STORE .

The actual MIPS name is sw, standing for STORE WORD .

The format of a store is similar to that of load: the name of the operation, followed by the register to

be stored, then offset to select the array element, and finally the base register.

Consider C assignment statement

A[12] = h + A[8];

Two of the operands are in memory.

The first two instructions are the same as in the prior example, except this time we use the proper

offset for byte addressing in the load word instruction to select A[8], and the add instruction places

the sum in $t0:

lw $t0, 32($s3) # Temporary reg $t0 gets A[8]

add $t0, $s2, $t0 # Temporary reg $t0 gets h + A[8]

sw $t0, 48($s3) # Stores h + A[8] back into A[12]

5.2.3. CONSTANT OR IMMEDIATE OPERANDS

In many statements a programmer will use a constant in an operation, for example, incrementing

index of an array.

In order to use constants in an operation, the constants should be placed in the memory when the

program is loaded and we have to load it from memory to execute the statement.

For example, to add the constant 4 to register $s3, we could use the code

lw $t0, AddrConstant4($s1) # $t0 = constant 4

add $s3, $s3, $t0 # $s3 = $s3 + $t0 ($t0 == 4)

An alternative to avoid the load instruction is to use the “ IMMEDIATE” instruction. The quick add

instruction with one constant operand is called ADD IMMEDIATE or addi.

To add 4 to register $s3, the code is

addi $s3, $s3, 4 # $s3 = $s3 + 4

P a g e | 1.16 Unit – I: Basic Structure of Computer Sysem

CS8491 – Computer Architecture

Representing Instructions

 R-type or R-format

 I-type or I-format

 J-type or J-format

1. R-type or R-format

 3 operands as registers

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

2. I-type or I-format

 16 bit constant or address field

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

3. J-type Instructions

 Jump & goto

op Jump Address
6 bits 28 bits

Constant operands occur frequently, and by including constants inside arithmetic instructions,

operations are much faster and use less energy than if constants were loaded from

memory. This is an example of making the COMMON CASE FAST .

6. REPRESENTING INSTRUCTIONS

 Instructions are kept in the

computer as a series of high and

low electronic signals and can be

represented as numbers.

 Each instruction can be represented

as a field of binary number, this

representation is called the

instruction format . Once

the MIPS instructions are

converted as binary numbers then

the instruction is called as

Machine Instruction .

 All of the MIPS instructions are of

32 B ITS LONG and can be classified

into any one of the three formats or

types. They are,

 R-type or R-format

 I-type or I-format

 J-type or J-format

6.1. R-TYPE INSTRUCTIONS

The R-type instructions are those have all the 3 OPERANDS AS REGISTE R S . These instructions follow the

format shown below,

Op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

 op represents Operation, it is called as opcode.

 rs is the first register source operand

 rt is the second source operand

 rd is the destination register to store the result

 shamt is the shift amount

 funct is the function field, it specifies the variant of the operation.

Example: Translate the MIPS assembly instruction into Machine Instruction

add $t0, $S1, $S2

Solution:

The instruction is a R-type instruction, the format of the R-type instruction is

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Unit – I: Basic Structure of Computer System P a g e | 1.17

CS8491 – Computer Architecture

op – It is add, the numeric code for add is 0
rs – It is the first source operand $S1, the register number of $S1 is 17

rt – It is the second source operand $S2, the register number of $S2 is 18

rd – It is the $t0, the register number of $t0 is 8

shamt – Shift amount is not used, set as 0

funct – function code for add is 32

0 17 18 8 0 32

The above decimal representation should be converted as binary in order to get the machine

instruction.

000000 10001 10010 01000 00000 100000

6.2. I-TYPE INSTRUCTION

I-type instructions are those that have TWO REGISTE RS AND ON E CONST ANT as their operands. These

instructions follow the following format,

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

The similarity between the R-type and I-type instructions are that the length of both the type of

instructions are 32 bits. The description of the fields are as follows.

The first 3 fields are same as the R-type instruction, since the I-type instruction does not have a

second source operand register rt is used as the destination register and the last three fields of the R-

type instruction is combined together as a 16 bit constant or address field .

Example: Translate the MIPS assembly instruction into Machine Instruction

addi $t0, $S1, 20

Solution:

The instruction is a R-type instruction, the format of the R-T YPE instruction is

Op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

op – It is add immediate, the numeric code for addi is 8

rs – It is the source operand $S1, the register number of $S1 is 17

rt – It is the destination operand $t0, the register number of $t0 is 8

The constant in the above instruction is 20

8 17 8 20

The above decimal representation should be converted as binary in order to get the machine

instruction.

001000 10001 01000 000000000010100

Some of the most commonly used instructions and their values are

P a g e | 1.18 Unit – I: Basic Structure of Computer Sysem

CS8491 – Computer Architecture

Instruction Format op rs rt rd shamt funct address

Add R 0 reg reg reg 0 32ten n.a.

sub(subtract) R 0 reg reg reg 0 34ten n.a.

add immediate I 8ten reg reg n.a. n.a. n.a. constant

lw(load word) I 35ten reg reg n.a. n.a. n.a. address

sw(store word) I 43ten reg reg n.a. n.a. n.a. address

6.3. J-TYPE INSTRUCTIONS

J-type instructions are instructions that are used by MIPS to transfer the control to a specific part of

the program. The name of the instruction used for this purpose is called jump, it is the equivalent of C

language`s goto statement.

J-type instruction is also similar to R-type and I-type instructions, it is of the same size 32 bits. Even

though the designers of MIPS could not use the same instruction format for all instructions, they have

used the same number of bits for all instruction following the design principle.

Good Design Demands Good Compromises

The J-type instruction follows the format

op Jump Address
6 bits 28 bits

Example: Translate the MIPS assembly instruction into Machine Instruction

j Exit
Exit is the label to which the control has to jump, consider it is at the location 1200

Solution:

The instruction is a J-type instruction, the format of the J-type instruction is

op Jump Address
6 bits 28 bits

op – It is Jump, the numeric code for j is 2
The jump address in the above instruction is 1200

2 1200

The above decimal representation should be converted as binary in order to get the machine

instruction.

000010 0000000000000000010010110000

7. LOGICAL OPERATIONS

In the beginning the operations performed where limited to an entire word, but later operations had to

be performed on individual bits. The following table shows the MIPS supported logical operations

along with the C and Java equivalent of those operations.

Logical Operation C Operation Java Operation MIPS Instruction

Shift left << << sll

Unit – I: Basic Structure of Computer System P a g e | 1.19

CS8491 – Computer Architecture

Shift right >> >>> srl

Bit-by-bit AND & & and, andi

Bit-by-bit OR | | or, ori

Bit-by-bit NOT ~ ~ nor

7.1. SHIFT OPERATIONS

The first two instructions shift left and shift right are classified as SHIFT operations. They are used to

move the bits to right or left and to fill the empty bits with 0.

Example: Consider two registers, $t2 and $S0. The register $S0 contains a value 9. What would be

the content of $t2 after the following instructions are executed?

a) sll $t2, $S0,4

b) srl $t2, $S0, 2

Solution:

sll $t2, $S0, 4 is the equivalent of the $t2 = $S0 << 4

$S0 contains the value 9

It is represented in binary as

0000 0000 0000 0000 0000 0000 0000 1001

The last 4 bits had to be moved left,

0000 0000 0000 0000 0000 0000 1001 0000
The above binary value is equal to 144.

Therefore the value stored in $t2 is 144

srl $t2, $S0,2 is the equivalent of $t2 = $S0 >> 2

$S0 contains the value 9

It is represented in binary as

0000 0000 0000 0000 0000 0000 0000 1001

The last 2 bits had to be moved right,

0000 0000 0000 0000 0000 0000 0000 0010
The above binary value is equal to 2

Therefore the value stored in $t2 is 2

The actual name of the two MIPS shift instructions are called shift left logical (sll) and shift right

logical (srl).

sll uses the shift amount field in the R-types instruction.

sll $t2,$s0,4

The machine language of the above instruction is

op Rs rt rd shamt funct

0 0 16 10 4 0

P a g e | 1.20 Unit – I: Basic Structure of Computer Sysem

CS8491 – Computer Architecture

shamt field used in the shift instructions, stands for shift amount.

The opcode of sll is 0 in both the op and funct fields are set as 0, rd contains 10 (register $t2), rt

contains 16 (register $s0), and shamt contains 4. The rs field is unused and thus is set as 0.

Shift left logical provides a bonus benefit. Shifting left by i bits gives the same result as multiplying

by 2i.

7.2. LOGICAL AND OPERATION

AND is a logical bit-by-bit operation with two operands that calculates a 1 only if there is a 1 in both

operands.

For example, if register $t2 contains

0000 0000 0000 0000 0000 1101 1100 0000

And register $t1 contains

0000 0000 0000 0000 0011 1100 0000 0000

Then, after executing the MIPS instruction

AND $t0, $t1, $t2 # reg $t0 = reg $t1 & reg $t2

The value of register $t0 would be

0000 0000 0000 0000 0000 1100 0000 0000

AND can be applied to set a bit pattern, to force 0s where there is a 0 in the bit pattern. Such a bit

pattern made using AND is called a mask, the mask is used to “conceal” some bits.

7.3. LOGICAL OR OPERATION

It is a bit-by-bit operation that places a 1 in the result if either operand bit is a 1.

For example, if register $t2 contains

0000 0000 0000 0000 0000 1101 1100 0000

And register $t1 contains

0000 0000 0000 0000 0011 1100 0000 0000

The result of the MIPS instruction

OR $t0, $t1, $t2 # reg $t0 = reg $t1 | reg $t2

The value in the register $t0:

0000 0000 0000 0000 0011 1101 1100 0000

Unit – I: Basic Structure of Computer System P a g e | 1.21

CS8491 – Computer Architecture

Decision Making

1. Conditional Branch

1.1. Branch-if-Equal Statement

beq register1, register2, L1

1.2. Branch-if-not-Equal Statement

bne register1, register2, L1

2. Loop Instruction

Loop: sll $t1,$s3,2

3. Case/Switch Statement

 Jump address table or jump table

 Jump register (JR)

7.4. LOGICAL NOT OPERATION

NOT takes one operand and places a 1 in the result if one operand bit is a 0, and vice versa. Using our

prior notation, it calculates �̅�

The designers of MIPS decided to include the instruction NOR (NOT OR) instead of NOT. If one

operand is zero, then it is equivalent to

NOT: A NOR 0 = NOT (A OR 0) = NOT (A)

For example, register $t1 contains

0000 0000 0000 0000 0011 1100 0000 0000

Register $t3 has the value 0, the result of the MIPS instruction

NOR $t0, $t1, $t3 # reg $t0 = ~ (reg $t1 | reg $t3)

The value in register $t0:

1111 1111 1111 1111 1100 0011 1111 1111

Constants are rare for NOR, since its main use is to invert the bits of a single operand; thus, the MIPS

instruction set architecture has no immediate version of NOR.

8. DECISION MAKING

The difference between a computer

and a simple calculator is its ability to

make decisions. Decision making is

commonly represented in

programming languages using the

“if” statement, sometimes combined

with “goto” statements and labels.

8.1. CONDITIONAL BRANCH

An instruction that compares two

values and transfers control to a new

address in the program based on the

outcome of the comparison.

MIPS assembly language includes two decision-making instructions, similar to an “if” statement with

a “goto”.

8.1.1. BRANCH-IF-EQUAL STATEMENT

beq register1, register2, L1

This instruction means go to the statement labelled L1 if the value in register1 equals the value in

register2. The mnemonic beq stands for branch if equal.

P a g e | 1.22 Unit – I: Basic Structure of Computer Sysem

CS8491 – Computer Architecture

8.1.2. BRANCH-IF-NOT-EQUAL STATEMENT

bne register1, register2, L1

It means go to the statement labelled L1 if the value in register1 does not equal the value in

register2. The mnemonic bne stands for branch if not equal.

Example: In the following code segment, f, g, h, i, and j are variables. If the five variables f

through j correspond to the five registers $s0 through $s4, what is the compiled MIPS code for this

C if statement?

if (i == j)
 f = g + h;
else
 f = g – h;
Solution:

The first expression compares for equality, so it looks like it is better to use branch-if-equal

instruction (beq).

In general, the code will be more efficient if we test for the opposite condition so we use the branch

if not equal instruction (bne):

bne $s3,$s4,Else # go to Else if i ≠ j

The next assignment statement performs a single operation,

add $s0,$s1,$s2 # f = g + h (skipped if i ≠ j)

Now we need to go to the end of the if statement, Unconditional branch statement (Jump

instruction) can be used,

J Exit #goto Exit

The assignment statement in the else portion of the if statement can be compiled into a single

instruction. We have to append the label Else to this instruction.

Else: sub $s0,$s1,$s2 # f = g – h (skipped if i = j)

We need to end the if-then-else statement using the Exit label

Exit:

8.2. LOOP INSTRUCTION

Loops are used to iterate a particular computational statement in a programming language. Iterations

in MIPS assembly language can be carried out as follows,

Consider the below mentioned iteration

Unit – I: Basic Structure of Computer System P a g e | 1.23

CS8491 – Computer Architecture

while (save[i] == k)

i += 1;

Assume that i and k correspond to registers $s3 and $s5 and the base of the array save is in $s6.

The first step is to load save[i] into a temporary register. Before we can add i to the base of array

save to form the address, we must multiply the index i by 4 due to the byte addressing problem.

Instead of multiplying index i by 4, we can use shift left logical, shifting left by 2 bits is equal to

multiplying by 2
2
 or 4.

Loop: sll $t1,$s3,2 # Temp reg $t1 = i * 4

To get the address of save[i], we need to add $t1 and the base of save in $s6:

add $t1,$t1,$s6 # $t1 = address of save[i]

Now we can use that address to load save[i] into a temporary register:

lw $t0,0($t1) # Temp reg $t0 = save[i]

The next instruction performs the loop test, exiting if save[i] ≠ k:

bne $t0,$s5,Exit # go to Exit if save[i] ≠ k

The next instruction adds 1 to i:

addi $s3,$s3,1 # i = i + 1

The end of the loop branches back to the while test at the top of the loop. We add the Exit label after

it,

j Loop # go to Loop

Exit:

The test for equality or inequality is probably the most popular test, but sometimes it is useful to see if

a variable is less than another variable.

A for loop tests if the index variable is less than 0. The MIPS instruction used to test is called set on

less than, or slt. If the test is true then a third register is set to 1 else it is set to 0.

slt $t0, $s3, $s4 # $t0 = 1 if $s3 < $s4 else $t0 = 0.

Register $t0 is set to 1 if the value in register $s3 is less than the value in register $s4 else, register

$t0 is set to 0.

Constant operands are used in most of the comparisons, so there is an immediate version of the set

on less than instruction. To test if register $s2 is less than the constant 10, we can just write

P a g e | 1.24 Unit – I: Basic Structure of Computer Sysem

CS8491 – Computer Architecture

slti $t0,$s2,10 # $t0 = 1 if $s2 < 10

MIPS compilers use the slt, slti, beq, bne, and 0 to create all relative conditions: equal, not

equal, less than, less than or equal, greater than, greater than or equal.

A binary number with a 1 in the most significant bit can represents a negative number, it is less than

any positive number. Positive numbers have a 0 in the most significant bit. In unsigned integers a 1 in

the most significant bit represents a number that is larger than any number that begins with a 0.

To handle unsigned numbers MIPS provides the following alternatives,

 Set on less than (slt) and set on less than immediate (slti) work with signed integers

 Set on less than unsigned (sltu) and set on less than immediate unsigned (sltiu)

works with unsigned integers

Suppose register $s0 has the binary number

1111 1111 1111 1111 1111 1111 1111 1111

and that register $s1 has the binary number

0000 0000 0000 0000 0000 0000 0000 0001

What are the values of registers $t0 and $t1 after these two instructions?

slt $t0, $s0, $s1 # signed comparison
sltu $t1, $s0, $s1 # unsigned comparison
Solution:

The content of the register $S0 has a 1 in the most significant bit, in case of a signed number

comparison it would be treated as a negative number, so the content of $S0 is less than the content

of the register $S1.

While using a unsigned number comparison the content of $S0 is larger than the content of $S1.

The values of the registers $t0 and $t1 would be 0 and 1 respectively

8.3. CASE/SWITCH STATEMENT

Switch Case statement allows the programmer to select one of many choices based on a single value.

The simplest way to implement switch is by using a chain of if-then-else statements.

A more efficient alternative is to encode as a table of addresses, called a jump address table or jump

table, the program indexes into the table and then jump to the correct instruction to be executed. The

jump table is an array of words containing addresses that correspond to labels in the code. The

program loads the correct address and label from the jump table into a register. It then needs to jump

using the address in the register.

MIPS include a JUMP REGISTER (JR) instruction, It is an unconditional jump to the address specified in

the register.

Unit – I: Basic Structure of Computer System P a g e | 1.25

CS8491 – Computer Architecture

Addressing Modes of MIPS

1. 32-Bit Immediate Operands

 Load Upper Immediate

 Assembler Temporary

2. MIPS Addressing Mode

2.1. Immediate addressing

2.2. Register addressing

2.3. Base or displacement addressing

2.4. PC-relative addressing

2.5. Pseudodirect addressing

9. ADDRESSING MODES OF MIPS

All MIPS instructions are 32 bits long

in order to keep the hardware as

simple as possible, sometimes it is

needed to have a 32-bit constant or

32-bit address in the instruction.

9.1. 32-BIT IMMEDIATE

OPERANDS

The MIPS instruction set includes the

instruction load upper

immediate (lui) . It is used to set

the upper 16 bits of a constant in a register, the lower 16 bits of the constant is set using ori instruction.

The machine language version of

lui $t0, 255 #$t0 is register 8:

Contents of register $t0 after executing

lui $t0, 255:

Example:

What is the MIPS assembly code to load this 32-bit constant into register $s0?

0000 0000 0011 1101 0000 1001 0000 0000

First, we would load the upper 16 bits, which is 61 in decimal, using lui:

lui $s0, 61 # 61 decimal = 0000 0000 0011 1101 binary

The value of register $s0 afterward is

0000 0000 0011 1101 0000 0000 0000 0000

The next step is to insert the lower 16 bits, whose decimal value is 2304:

ori $s0, $s0, 2304 # 2304 decimal = 0000 1001 0000 0000

The final value in register $s0 is the desired value:

0000 0000 0011 1101 0000 1001 0000 0000

The compiler or the assembler must break large constants into pieces and then reassemble them into a

register. If this is done by the assembler, then the assembler must have a temporary register available

in which to create the long values. This a use of the register $at (assembler temporary), which

is reserved for the assembler.

P a g e | 1.26 Unit – I: Basic Structure of Computer Sysem

CS8491 – Computer Architecture

9.2. MIPS ADDRESSING MODE

Multiple forms of addressing are generically called addressing modes. The MIPS addressing modes

are the following,

9.2.1. IMMEDIATE ADDRESSING

The operand is a constant within the instruction itself

add $S3, $t0, #10

9.2.2. REGISTER ADDRESSING

The operand is a register

add $S3, $S4, $t0

9.2.3. BASE OR DISPLACEMENT ADDRESSING

The operand is at the memory location whose address is the sum of a register and a constant in the

instruction

lw $S5,16($S2)

9.2.4. PC-RELATIVE ADDRESSING

The branch address is the sum of the PC and a constant in the instruction

Unit – I: Basic Structure of Computer System P a g e | 1.27

CS8491 – Computer Architecture

beq $t0,$t3,Label

9.2.5. PSEUDODIRECT ADDRESSING

The jump address is the 26 bits of the instruction concatenated with the upper bits of the PC

j Exit

Assume a two address format specified as source, destination. Examine the following sequence

of instructions and explain the addressing modes used and the operation done in every

instruction.

 i. Move (R5)+, R0

 ii. Add (R5)+, R0

 iii. Move R0, (R5)

 iv. Move 16(R5), R3

 v. Add #40, R5

Move (R5)+, R0

Register-Indirect with increment Addressing mode, Increments the contents of R5 by 1 and loads it to

R0.

Add (R5)+ R0

Register-Indirect with increment Addressing mode, Increments the contents of R5 by 1, adds the

result to R0 and stores the result in R0

R0 = ((R5)+1)+R0.

Move R0, (R5)

Register Differed addressing mode, content of R0 is moved to the memory location of R5.

Move 16(R5), R3

Displacement Addressing mode, M(16+R5) is moved to the R3 register

Add #40, R5

Immediate Addressing Mode, R5= R5+40

P a g e | 1.28 Unit – I: Basic Structure of Computer Sysem

CS8491 – Computer Architecture

PART – A

COMPONENTS OF A COMPUTER SYSTEM

1. What are the five classic components of a computer?[April/May-2017][Nov/Dec-

2017]

The five classic components of a computer are input, output, memory, datapath, and control, with

the last two sometimes combined and called the processor.

PROCESSOR TECHNOLOGY

2. What is meant by Stored Program Concept? [May/June 2007]

Today’s computers are built on two key principles:

1. Instructions are represented as numbers.

2. Programs are stored in memory to be read or written, just like data.

These principles lead to the stored-program concept. Treating instructions in the same way as data

greatly simplifies both the memory hardware and the software of computer systems.

3. What are the features of Von-Newmann Model?

The main features of Von-Newmann model are,

1. It uses stored programming concept

2. Memory is addressed by location – irrespective of type of data it contains

3. Instructions are executed sequentially.

4. What do you mean by Von-Newmann Bottleneck?

By using stored programming concept the performance of the processor is only as good as the

performance of the memory, this limits the maximum utilization of the available processing

capability. This condition is called as Von-Newmann Bottleneck

5. Distinguish pipelining from parallelism. [April/May 2015]

Pipelining is the process of making the functional units of the CPU independent and this helps in

increasing the throughput of the processor.

Parallelism is the process of executing more than one instruction in parallel, this requires

redundant hardware for functional units, whereas pipelining does not require redundancy,

Parallelism decreases execution time.

PERFORMANCE OF A COMPUTER

6. What is defined as performance of a computer?

Performance of a computer is the level of useful work accomplished by a computer compared to

the time and resources used.

 Short response time for a given piece of work

 High throughput.

Unit – I: Basic Structure of Computer System P a g e | 1.29

CS8491 – Computer Architecture

7. Define Response time and Throughput

Response time is the actual execution time of a single program or an individual task.

Throughput is also called as Bandwidth, it is the number of tasks completed per unit time.

8. What is Execution Time?

It is also called as response time. It is the total time required for the computer to complete a task,

including disk accesses, memory accesses, I/O activities, operating system overhead, etc.

9. What is CPU Execution Time?

It is also called as CPU time, it is the actual amount of time the CPU spends computing for a

particular task.

10. Define CPI

CPI is Clock Cycles per Instruction. It is the average number of clock cycles each instruction

takes to execute. CPI is useful in comparing two different implementations of the same instruction

set architecture.

INSTRUCTIONS – OPERATIONS AND OPERANDS

11. Define – ISA

The instruction set architecture, or simply architecture of a computer is the interface between the

hardware and the lowest-level software. It includes anything programmers need to know to make

a binary machine language program work correctly, including instructions, I/O devices, and so on.

12. Define – ABI

Typically, the operating system will encapsulate the details of doing I/O, allocating memory, and

other low-level system functions so that application programmers do not need to worry about such

details. The combination of the basic instruction set and the operating system interface provided

for application programmers is called the application binary interface (ABI).

13. What are the fields in an MIPS instruction?

MIPS fields are

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Where,

op: Basic operation of the instruction, traditionally called the opcode.

rs: The first register source operand.

rt: The second register source operand.

rd: The register destination operand. It gets the result of the operation.

shamt: Shift amount.

funct: Function.

P a g e | 1.30 Unit – I: Basic Structure of Computer Sysem

CS8491 – Computer Architecture

14. Write an example for immediate operand.

The quick add instruction with one constant operand is called add immediate or addi. To add 4 to

register $s3, we just write

addi $s3,$s3,4 #$s3 = $s3+4

REPRESENTING INSTRUCTIONS

15. Define Opcode.

Opcode is abbreviated from operation code, it is the portion of a machine language instruction

that specifies the operation to be performed.

16. What does the design principle “Good Design Demands Good Compromises”

mean?

Even though the designers of MIPS could not use the same instruction format for all instructions,

they have used the same number of bits for all instruction in order to reduce the complexity of the

design, based on the design principle “Good Design Demands Good Compromises”.

ADDRESSING AND ADDRESSING MODES

17. What are the various addressing modes supported by MIPS?

The MIPS addressing modes supported by MIPS are:

1. Immediate addressing

2. Register addressing

3. Base or displacement addressing

4. PC-relative addressing

5. Pseudo direct addressing

18. Why immediate addressing mode is considered as an important addressing

mode?

In Immediate Addressing mode, the operand is a constant within the instruction itself, this

eliminates the need for loading the constant operand into a memory location and using the

memory address to perform the operation. By doing so the total number of individual

instructions required is reduced, for this reason Immediate Addressing is considered to be

important and more commonly used.

19. Brief about Relative Addressing mode with an example. [Nov/Dec 2014]

In relative addressing mode, the branch address is the sum of the program counter and a constant

in the instruction.

beq $S0,$S3,Label

20. State the need for indirect addressing.[April/May 2017]

Unit – I: Basic Structure of Computer System P a g e | 1.31

CS8491 – Computer Architecture

PART – B

COMPONENTS OF A COMPUTER SYSTEM

1. Explain the various components of computer System with neat diagram

[Nov/Dec 2014-16M][April/May-2018-8M].[Refer Pg No:1.1]

PERFORMANCE OF A COMPUTER

2. Discuss in detail the various measures of performance of a computer

[Nov/Dec 2014 – 8M] [Refer Pg No:1.6]

3. Consider the computer with three instruction classes and CPI measurement as

given below and instruction count for each instruction class for the same

program from two different compilers are given. Assume that the computer`s

clock rate is 4GHz. Which code sequence will execute faster according to

execution time

Code from CPI for this Instruction Class

 A B C

CPI 1 2 3

Code from Instruction Count for each class

 A B C

Compiler 1 2 1 2

Compiler 2 4 1 1

[Nov/Dec 2014 – 6M]

INSTRUCTIONS – OPERATIONS AND OPERANDS

4. Explain in detail various operations of a computer Hardware by providing

relevant MIPS instructions.[Nov/Dec-2017-8M] [Refer Pg No:1.11]

[OR]

Explain in detail how a high-level programming statement are compiled into

operands understandable by MIPS.

5. Explain various operands of computer Hardware and how they can be accessed

from the memory.[Nov/Dec-2017-8M] [Refer Pg No:1.12]

REPRESENTING INSTRUCTIONS

6. Explain how the high-level language statements are represented as assembly

language instructions in a computer. [Refer Pg No:1.16]

[OR]

Explain the difference between how the humans provide instructions to a

computer and the computer views it. [Refer Pg No:1.16]

[OR]

7. Discuss about various techniques to represent instructions in a computer system

[April / May 2015 – 16M] [Nov/Dec-2017-13M] [Refer Pg No:1.16]

P a g e | 1.32 Unit – I: Basic Structure of Computer Sysem

CS8491 – Computer Architecture

LOGICAL & CONTROL OPERATIONS

8. Discuss various logical operations that are executable by a MIPS processor.

[Refer Pg No:1.18]

9. What are the various control operations included in the MIPS ISA? Explain in

detail. [Refer Pg No:1.25]

[OR]

Explain in detail various decision making instructions that are executable by a

MIPS processor. [Refer Pg No:1.25]

ADDRESSING AND ADDRESSING MODES

10. Define Addressing mode and explain the basic MIPS addressing modes with

an example for each. [Refer Pg No:1.21]

[OR]

 What is the need for addressing in a computer system? Explain different

addressing modes with example [April/May 2015 – 16M] [Refer Pg No:1.21]

11. Assume a two address format specified as source, destination. Examine the

following sequence of instructions and explain the addressing modes used

and the operation done in every instruction.

1. Move (R5)+, R0

2. Add (R5)+, R0

3. Move R0, (R5)

4. Move 16(R5), R3

5. Add #40, R5

[Nov/Dec 2014 – 10M]

