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Unit – II 
Arithmetic for computers 

Addition and subtraction – Multiplication – Division – Floating Point operations – 

Subword parallelism. 

1. ARITHMETIC AND LOGIC UNIT (ALU) 

The Arithmetic and Logic Unit (ALU) is responsible for performing arithmetic operations such as 

add, subtract, division and multiplication and logical operations such as ANDing, ORing, Inverting 

etc. 

The arithmetic operation to be performed is based on the data type. 

Two basic data types are implemented in the computer system:  

 Fixed point numbers  

 Floating point numbers.  

Representing numbers in such data types is commonly known as fixed point representation 

and floating point representation . 

Based on the complexity of operation done by ALU its design has classified into two types: 

1. Combinational logic circuits based ALU 

2. Sequential logic circuits based ALU 

Simple ALU perform fixed point addition and subtraction as well as word logical operations, can be 

realized by COMBINATIONAL C IR CU I TS . 

Complex ALU perform multiplication and division as well as floating point operation. It can be 

performed using SEQUENTIAL  LOGIC  C I R CU ITS  based ALU. 

To construct a ALU we need four basic hardware components such as  

1. AND gates 

2. OR gates 

3. Inverters 

4. Multiplexers 

1.1. ALU CONTROL LINES 

ALU is capable of performing both arithmetic and logic operations based control lines. Control line 

specifies which operation has to be executed by the ALU. It is shown below: 

ALU control lines Function 

0000 AND 

0001 OR 

0010. Add 
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0110 Subtract 

0111 Set on less than 

1100 NOR 

The MIPS word is 32 bits wide so we need a 32 bit wide ALU. It is constructed by connecting 32 1 bit 

ALU's in series.  

1.2. 1-BIT ALU 

The logical operations are simpler when compared to arithmetic operations because they map directly 

onto the hardware components. 

1.2.1. OR OPERATION 

A B Out 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

1.2.2. AND OPERATION 

A B Y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

1.2.3. NOT OPERATION 

𝑨 𝑨̅ 

0 1 

1 0 

1.3. ADDER CIRCUIT IN 1 BIT ALU 

Adder is a circuit used to perform addition operation. Based on the 

input and output adder can be classified into two types.  

 Half adder  

 Full adder 

Generally adder must have two inputs for operands arid a single 

output for the sum. In some cases we have second output called as 

CAR RY OUT . The carry out from the neighbour adder must be included 

as an input, so we need a third input. This input is called CAR RY IN . 

1-bit adder is also called as full adder  because it has 3 inputs and 2 outputs. 

An adder with only the 2 inputs is called a half adder .  
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1.4. SUBTRACTION 

The subtraction consists of four possible elementary operations, 

 

S.NO OPERATIONS 

1. 0-0=0 

2. 0-1=1 with 1 borrow 

3. 1-0=1 

4. 1-1=0 

 

1.4.1. BINARY SUBTRACTION USING 1’S COMPLEMENT METHOD 

In a 1’s complement subtraction, negative number is represented in the 1’s complement form and 

actual addition is performed to get the desired result. 

Eg: operation A-B 

1. Take 1’s complement of B 

2. 2. Result← a+ 1’s complement of B 

3. If carry is generated then the result is positive and in the true form. Add carry to the result to 

get the final result. 

4. If carry is not generated then the result is negative and in the 1’s complement form. 

Example: 

1. Perform (15)10 –(28)10 using 6-bit 1’s complement representation. 

 

 

 

 

 

 

 

 

 

 

 

 

1.4.2. BINARY SUBTRACTION USING 2’S COMPLEMENT METHOD 

In a 2’s complement subtraction, negative number is represented in the complement form and actual 

addition is performed to get the desired result. 

Eg: operation A-B 

1. Take 2’s complement of B 

2. 2. Result← A+ 2’s complement of B 

3. If carry is generated then the result is positive and in the true form. In this carry is ignored. 
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4. If carry is not generated then the result is negative and in the 2’s complement form. 

Example: 

1. Perform (28)- (15) using 6 bit 2’s complement  representation. 

 

 

 

 

Truth table for full adder is shown below: 

Inputs Outputs 

Comments 
A B 

Carry 

in 

Carry 

out 
Sum 

0 0 0 0 0 0 + 0 + 0 = 00two 

0 0 1 0 1 0 + 0+ 1 = 01two 

0 1 0 0 1 0 + 1 + 0 = 01 two 

o 1 1 1 0 0 + 1 + 1 = 10 two 

1 0 0 0 1 1 + 0 + 0 = 01 two 

1 o 1 1 0 1 + 0 + 1 = 10 two 

1 1 0 1 0 1 + 1 + 0 = 10 two 

1 1 1 1 1 l + 1 + l = 11 two 

2. DESIGN OF RIPPLE CARRY ADDER 

Half Adders can be used to add two one bit binary numbers. It is also possible to create a logical 

circuit using multiple full adders to add N-bit binary numbers.  

Each full adder inputs a Cin, which is the Cout of the previous adder.  

This kind of adder is a Ripple Carry Adder, since each carry bit "ripples" to the next full adder. The 

first full adder may be replaced by a half adder. 

The block diagram of 4-bit Ripple Carry Adder is shown here below 
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The layout of ripple carry adder is simple, which allows for fast design time; however, the ripple carry 

adder is relatively slow, since each full adder must wait for the carry bit to be calculated from the 

previous full adder.  

The gate delay can easily be calculated by inspection of the full adder circuit. Each full adder requires 

three levels of logic. 

In a 32-bit ripple carry adder, there are 32 full adders, so the critical path delay is 31 * 2(for carry 

propagation) + 3(for sum) = 65 gate delays. 

𝑷𝒓𝒐𝒄𝒑𝒂𝒈𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝑫𝒆𝒍𝒂𝒚 = 𝒏𝒅 

Where, 

n is the number of full adders used 

d is the delay in sec 

While using parallel connected full adders, unlike serial adders the amount of hardware needed gets 

increasing as the number of bits becomes higher. 

3. DESIGN OF FAST ADDER 

The n-bit adder ripple carry adder is implemented using full-adder stages. In which the carry output 

of each full-adder stage is connected to the carry input of the next higher-order stage. 

The sum and carry outputs of any stage cannot be produced until the input carry occurs; this leads to a 

time delay in the addition process. This delay is known as carry propagation delay, consider the 

following addition. 

 0101 

+ 0011 

 1000 

Addition of the LSB position produces a carry into the second position. This carry, when added to the 

bits of the second position (stage), produces a carry into the third position. The latter carry, when 

added to the bits of the third position, produces a carry into the last position. 

The key thing to notice in this example is that the sum bit generated in the last position (MSB) 

depends on the carry that was generated by the addition in the previous positions.  
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This means that, adder will not produce correct result until LSB carry has propagated through the 

intermediate full-adders. This represents a time delay  that depends on the PROPAGATIO N DE LAY  

produced in each full-adder. 

3.1. PROPAGATION DELAY 

If each full-adder has a propagation delay of 30 ns, then propagation delay 90 ms after LSB carry is 

generated. Therefore, total time required to perform addition is 90 + 30= 120 ns. This situation 

becomes much worse for more number of bits. If the adder were handling 16-bit numbers, the carry 

propagation delay could be 480 ns. 

Full-adder requires two gate delays and sum requires only one gate delay. When we connect full adder 

circuits in cascade to generate n-bit ripple adder. Cn-1 is available in 2(n-l) gate delays. The final 

carry-out, Cn is available after 2n gate delays.  

Thus for 4-bit ripple adder C4 is available after 8(2x4) gate delays, C3 is available in 6[2(4—1)] gate 

delays and S3 is available in 7 gate delays. 

One method of speeding up this process by eliminating inter stage carry delay is called look ahead-

carry addition. This method utilizes logic gates to look at the lower-order bits of the augend and 

addend to see if a higher-order carry is to be generated. It uses two functions: carry generate and carry 

propagate. 

3.2. CARRY LOOK AHEAD CIRCUIT 

The full adder defines two functions:  

 Carry generate  

 Carry propagate. 

The output sum and carry can be expressed as  

𝑷𝒊  =  𝑿𝒊 ⨁ 𝒀𝒊  

𝑮𝒊  =  𝑿𝒊 𝒀𝒊 

Gi is called a carry generate and it produces on carry when both Xi and Yi are one, regardless of the 

input carry.  
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Pi is called a carry propagate because it is term associated with the propagation of the carry from Gi to 

Ci+1. Now Ci+1 can be expressed as a sum of products function of the P and G outputs of all the 

preceding stages. 

For example, the carriers in a four stage carry-look ahead adder are defined as follows: 

𝑪𝟏 = 𝑮𝟎 + 𝑷𝟎𝑪𝒊𝒏 

The Carry for the bit position i can be calculated by using the following formula, 

𝑪𝒊 = 𝒈𝒊 + 𝒑𝒊𝑪𝒊−𝟏 (1) 

𝑪𝒊−𝟏 = 𝒈𝒊−𝟏 + 𝒑𝒊−𝟏𝑪𝒊−𝟐 (2) 

Substituting equation (2) in (1) 

𝑪𝒊 = 𝒈𝒊 + 𝒑𝒊(𝒈𝒊−𝟏 + 𝒑𝒊−𝟏𝑪𝒊−𝟐) 
𝑪𝒊 = 𝒈𝒊 + 𝒑𝒊𝒈𝒊−𝟏 + 𝒑𝒊𝒑𝒊−𝟏𝑪𝒊−𝟐 

 

(3)  

(4)  

Sum of the ith stage can be computed as follows,  

𝑺𝒊 = 𝒑𝒊⨁𝒈𝒊⨁𝑪𝒊−𝟏 

4. RIPPLE CARRY ADDER 

A 
 

0 0 0 0 1 0 1 0  
 
: 10 

B + 0 0 0 0 0 1 0 1  
 
: 5 

 

Sum 
 

0 0 0 0 1 1 1 1  
 
: 15 

 

 

5. CARRY LOOK AHEAD ADDER 

𝑷𝒊  =  𝑿𝒊 ⨁ 𝒀𝒊  

𝑮𝒊  =  𝑿𝒊 𝒀𝒊 

𝑺𝒊 = 𝒑𝒊⨁𝒈𝒊⨁𝑪𝒊−𝟏 
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6. RIPPLE CARRY ADDER 

A 
 

0 0 0 1 0 0 0 0  
 
: 16 

B + 0 0 0 0 0 1 0 1  
 
: 5 

 

Sum 
 

0 0 0 1 0 1 0 1  
 
: 21 

 

 
    

 

 

7. CARRY LOOK AHEAD ADDER 

𝑷𝒊  =  𝑿𝒊 ⨁ 𝒀𝒊  

𝑮𝒊  =  𝑿𝒊 𝒀𝒊 

𝑺𝒊 = 𝒑𝒊⨁𝒈𝒊⨁𝑪𝒊−𝟏 
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8. SEQUENTIAL MULTIPLICATION 

The multiplication of binary number is done in the same way as decimal numbers are multiplied. 

Consider the example, Multiplying 1010 by 1000 

Multiplicand    1 0 1 0 

Multiplier   X 1 0 0 0 

    0 0 0 0 

   0 0 0 0  

  0 0 0 0   

 1 0 1 0    

Product 1 0 1 0 0 0 0 

The first operand is called the MULTIPLICAND  and second operand is called the MULTIPL IER , the final 

result is called the PRODUCT  

Take the digits of the multiplier one at the time from right to left, multiplying the multiplicand by the 

single digit of the multiplier. 

Shifting the intermediate product one digit to the left of the earlier intermediate products. 

The numbers of digits in the product is larger than the number of digits in either the multiplicand or 

the multiplier. 

Multiplication is usually implemented by some form of repeated addition. 

To compute X x Y is to add the multiplicand Y to itself X times, where X is the multiplier 

 

8.1. MULTIPLICATION HARDWARE 

The multiplicand 

register, ALU and 

product register are 

all 64 bit and 

multiplier is 32 bits. 

The 32 bit 

multiplicand starts 

in the right half of 

the 

multiplicand  

register and is 

shifted left 1  

bit  on each step. 

The multiplier  

is shifted in the opposite direction  at each step. 

The multiplication algorithm starts with the product initialized to 0. Control decides when to shift the 

multiplicand and multiplier registers and when to write new values into the product register . 
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8.2. MULTIPLICATION ALGORITHM 

STEP  1:  The least significant bit of the multiplier (multiplier 0) determines whether the multiplicand is 

added to the product register. 

STEP  2:  The left shift has the effect of moving the intermediate operands to the left. 

STEP  3:  The shift right gives the next bit of the multiplier to examine in the following iteration. 

STEP  4:  These three steps are repeated 32 times to obtain the product. 

8.2.1. CLOCK CYCLES FOR MULTIPLICATION ALGORITHM 

This algorithm requires almost 100 clock cycles to multiply two 32 bit numbers. 

Multiply take multiple clock cycles without affecting performance. 

We can increase the speed of process by performing the operations in parallel manner. That means, 

the multiplier and multiplicand are shifted while the multiplicand is added to the product if the 

multiplier bit is a 1 
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8.3. REFINED MULTIPLICATION HARDWARE 

The hardware is used to 

ensure that it is the right 

bit of the multiplier and 

gets the pre-shifted 

version of the 

multiplicand. 

Hardware will take 1 clock 

cycle per step. 

Compare with the first 

version of hardware, the 

multiplicand register, 

ALU and multiplier register are all 32 bits. 

The product register only has 64 bits. The product is shifted right. The separate multiplier register also 

disappeared and the multiplier is placed instead in the right half of the product register. 

8.4. EXAMPLE 

Multiply 210 by 310 

 

A 
 

0  0  0  0  1  1  0  1  
        

13  

X x 0  0  0  0  0  1  1  0  
        

6  

Y 
 

0  0  0  0  1  0  -1  0 
        

recoded multiplier  

 

Shift Only  
 

0  0  0  0  0  0  0  0  0  
        

Add -A  + 1  1  1  1  0  0  1  1  
         

 

  
1  1  1  1  0  0  1  1  0  

        
Shift  

 
1  1  1  1  1  0  0  1  1  0  
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Shift Only  
 

1  1  1  1  1  1  0  0  1  1  0  
      

Add A  + 0  0  0  0  1  1  0  1  
         

 

  
0  0  0  0  1  0  0  1  1  1  0  

      
Shift  

 
0  0  0  0  0  1  0  0  1  1  1  0  

     
Shift Only  

 
0  0  0  0  0  0  1  0  0  1  1  1  0  

    
Shift Only  

 
0  0  0  0  0  0  0  1  0  0  1  1  1  0  

   
Shift Only  

 
0  0  0  0  0  0  0  0  1  0  0  1  1  1  0  

  
Shift Only  

 
0  0  0  0  0  0  0  0  0  1  0  0  1  1  1  0  78 

8.5. SIGN MULTIPLICATION-BOOTH’S ALGORITHM 

A powerful algorithm for signed number multiplication is a booth’s algorithm, which generates a 2n-

bit product and treats both positive and negative numbers uniformly. 

In general, for booth’s algorithm recoding scheme can be given as: 

 

 

Multiplier Version of multiplier selected 

by bit i Bit i Bit i-1 

0 0 0 

0 1 1 

1 0 -1 

1 1 0 

 

  

Example: 

Multiply 01110(+14) and 11011(-5) 
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9. BOOTH`S ALGORITHM FOR MULTIPLICATION 

Step 1: Load A = 0, Q-1 =0  

B = Multiplicand  

Q = Multiplier  

SC = n 

Step 2: Check the status of Q0Q-1 

if Q0Q-1 = 10 Perform 𝐴 ← 𝐴 − 𝐵  

if Q0Q-1 = 01 perform 𝐴 ← 𝐴 + 𝐵 

Step 3: Arithmetic shift right: A, Q, Q-1 

Step 4: Decrement sequence counter 

if not zero, repeat step 2 through 4 

Step 5: Stop 

 

 

 

 

 

 

 

 

 

Example: Multiply (-7) and (3) by using booth’s multiplication. Give the flow table of 

multiplication. 
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9.1. BIT PAIR RECODING OF  MULTIPLIERS 

To speed up the multiplication process in the booth’s algorithm a technique called bit pair 

recoding is used. It is also called modified booth’s algorithm. 

Multiplier bit Pair 
Multiplier bit on 

the right 

Bit-Pair  recoded  

multiplier bit at 

position i 

i+1 i i-1  

0 0 0 0 

0 0 1 +1 

0 1 0 +1 

0 1 1 +2 

1 0 0 -2 

1 0 1 -1 

1 1 0 -1 

1 1 1 0 

 

Eg:Solve the following using bit-pair recoding method. 

Multiplicand=01111(15) 

Multiplier=10110 (-10) 

 

10. DIVISION 

The division process for binary numbers is similar to the decimal numbers. In the division process, 

first the bits of the dividend are examined from left to right, until the set of bits examined represents a 

number greater than or equal to the divisor. 

Until this condition occurs, 0's are placed in the quotient from left to right. 
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When the condition is satisfied, a 1 is placed in the quotient and the divisor is subtracted from the 

partial dividend. The result is referred to as a PARTIAL  REMAINDE R . 

From this point onwards, the division process is required. In each repetition cycle, additional bits from 

the dividend are brought down to the partial remainder until the result is greater than or equal to the 

divisor and the divisor is subtracted from the result to produce a new partial remainder. 

The process continues until all the bits of the dividend are brought down and result is still less than the 

divisor. 

10.1. RESTORING DIVISION ALGORITHM 

It consists of n+1 bit binary adder, shift, add and subtract control logic and registers A, B, and Q. 

Divisor  and dividend  are loaded into register B and register Q, respectively. Register A is 

initially set to zero. The division operation is then carried out. 

After the division is complete, the n-bit quotient is in register Q and the remainder is in register A. 

 

 

 

10.1.1. OPERATION STEPS 

1. Shift A and Q left one binary position. 

2. Subtract divisor (i.e. add 2's complement of divisor (B)) from A and place answer back in A  

(𝐴 ← 𝐴 −  𝐵). 

3. If the sign bit of A is 1, set Q0 to 0 and add divisor back to A (that is, restore A); Otherwise, set 

Q0 to 1. 

4. Repeat steps 1, 2, and 3 n times. 
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10.1.2. EXAMPLE 

Dividend:  1000 

Divisor: 0011 
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10.2. NON-RESTORING DIVISION 

STEP  1:  If the sign of A is 0, shift A and Q left one bit position and subtract divisor from A; 

otherwise, shift A and Q left and add divisor to A. If the sign of A is 0, set Q0 to 1; otherwise, set Q0 

to 0. 

STEP  2:  Repeat steps 1 and 2 for n times. 

STEP  3:  If the sign of A is 1, add divisor to A. 

 

11. FLOATING POINT REPRESENTATION 

In addition to signed and unsigned numbers, programming languages support numbers with fractions 

called reals in mathematics. Let's consider some examples for real numbers. 

3.14159265   (Pi) 

2.71828 (e) 

0.00000000.1 or 1.0 x 10-9 (seconds in nanoseconds)  

3,155,760,000 or 3.15576 x 109 (seconds in a century)  

The last two numbers are bigger than 32 bit signed integer. These numbers is called scientific 

notation. 
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11.1. SCIENTIFIC NOTATION 

It is a notation that renders numbers with a single digit to the left of the decimal point. 

A number in scientific notation has no leading 0's is called a NORMALI ZED  NUMBER . 

Binary number also can be represented in the normalized form. To keep a binary number in 

normalized form, we need a base value that can increase or decrease by exactly the .number of bits the 

number must be shifted to have one non zero digit to the left of the decimal point Computer arithmetic 

supports such number is called FLOATING  POI NT  

11.1.1. ADVANTAGES OF SCIENTIFIC NOTATION 

 It simplifies exchange of data that includes floating point numbers.  

 It simplifies the floating point arithmetic algorithm to know that numbers will always be in 

this form. 

 It increases the accuracy of the numbers that can be stored in word. 

11.2. FLOATING POINT REPRESENTATION IN MIPS 

A designer of a floating point representation must find a compromise the size of the fraction and the 

size of the exponent. Because a fixed word size means we must take a bit from one to add a bit to the 

other. 

Fraction is the value generally between 0 and 1 it is called the mantissa . Exponent  is the 

numerical representation system of floating point arithmetic. 

Increasing the size of the fraction enhances the precision of the fraction. Increasing the size of the 

exponent increases the range numbers that can be represented. 

Floating point numbers are usually a multiple of the size of a word. The representation of a MIPS 

floating point number is shown below. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

 

S Exponent Fraction 

1 

bit 
8 bits 23 bits 

where S is the sign of the floating point number (1 – Negative & 0 – Positive)  

Exponent is the value of the 8-bit exponent field. Fraction is the 23bit number. In general floating 

point numbers are of the form  

(1)sF2E 

F - Involves the value in the fraction field  

E-involves the value in the exponent field 

Thus cause the overflow interrupts in floating point arithmetic as well as in integer arithmetic. 



Unit – II: Arithmetic Operations P a g e  | 2.19 

 

CS8491– Computer Architecture 
 

11.2.1. OVERFLOW (FLOATING POINT) 

Overflow is a situation m which a positive exponent becomes too large to fit in the exponent field. 

Overflow means the exponent is too large to be represented in the exponent field. 

11.2.2. UNDERFLOW (FLOATING POINT) 

Under flow is a situation in which a negative exponent becomes too large to fit in the exponent field. 

Underflow occurs when the negative exponent is too large to fit in the exponent field. 

Both underflow and overflow condition will occur in floating point arithmetic. One way to reduce 

chances of underflow or overflow is to offer another format that has a larger exponent 

11.2.3. DOUBLE PRECISION 

It is a floating point value represented in two 32-bit words. 

The representation of a double precision floating point number take two MIPS words as shown below: 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

 

S Exponent Fraction 

1 

bit 
11 bits 20 bits 

where 

S is the sign of the number 

Exponent is the value of the 11 bit exponent field  

12. FLOATING POINT OPERATION 

 

12.1. FLOATINH POINT ADDIDTION 

To illustrate the floating point addition, let us consider the following example 𝟗. 𝟗𝟗𝟗𝒕𝒆𝒏 × 𝟏𝟎𝟏 +

𝟏. 𝟔𝟏𝟎𝒕𝒆𝒏 × 𝟏𝟎−𝟏 

Assume that we can store only four decimal digits of the significand and two decimal digits of the 

exponent. 

Step 1: 

To add these numbers we must align the decimal point of the number that has the smaller 

exponent. We need to convert the smaller number, 𝟏. 𝟔𝟏𝟎𝒕𝒆𝒏 × 𝟏𝟎−𝟏  to match the larger 

exponent. 

𝟏. 𝟔𝟏𝟎𝒕𝒆𝒏 × 𝟏𝟎−𝟏 = 𝟎. 𝟏𝟔𝟏𝟎𝒕𝒆𝒏 × 𝟏𝟎𝟎 = 𝟎. 𝟎𝟏𝟔𝟏𝟎𝒕𝒆𝒏 × 𝟏𝟎𝟏 



P a g e  | 2.20 Unit – II: Arithmetic Operations 

 

CS8491 – Computer Architecture 
 

Step 2: 

Next step is the addition of the significands 

  9.999ten 

+  0.016ten 

 10.015ten 

The sum is 𝟏𝟎. 𝟎𝟏𝟓𝒕𝒆𝒏 × 𝟏𝟎𝟏 

Step 3: 

This sum is not in normalized scientific notation, so we need to adjust it: 

𝟏𝟎. 𝟎𝟏𝟓𝒕𝒆𝒏 × 𝟏𝟎𝟏 = 𝟏. 𝟎𝟎𝟏𝟓𝒕𝒆𝒏 × 𝟏𝟎𝟐 

Whenever the exponent is increased or decreased, we must check for overflow or underflow. 

Step 4: 

Since we assumed that the significand can be only four digits long (excluding the sign), we 

must round the number. If the digit to the right of the desired point is between 0 and 4 and add 

1 to the digit if the number to the right is between 5 and 9. The number  

𝟏. 𝟎𝟎𝟏𝟓𝒕𝒆𝒏 × 𝟏𝟎𝟐 

is rounded to four digits in the significand to 

𝟏. 𝟎𝟎𝟐𝒕𝒆𝒏 × 𝟏𝟎𝟐 

12.1.1. FLOATING POINT ADDITION ALGORITHM 

Steps 1 and 2 are similar to the example, adjust the significand of the number with the smaller 

exponent and then add the two significands.  

Step 3 normalizes the results, forcing a check for overflow or underflow. The test for overflow and 

underflow in step 3 depends on the precision of the operands.  

The pattern of all 0 bits in the exponent is reserved and used for the floating-point representation of 

zero.  

The pattern of all 1 bits in the exponent is reserved for indicating values and situations outside the 

scope of normal floating-point numbers  
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12.2. FLOATING POINT MULTIPLICATION 

To illustrate the floating point addition, let us consider the following example 

(1.110𝑡𝑒𝑛 × 1010) × (9.200𝑡𝑒𝑛 × 10−5) 

Assume that we can store only four digits of the significand and two digits of the exponent 

Step 1 

The exponent of the product is calculated by simply adding the exponents of the operands 

together 
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𝑵𝒆𝒘 𝒆𝒙𝒑𝒐𝒏𝒆𝒏𝒕 = 𝟏𝟎 + ( −𝟓) = 𝟓 

Step 2 

Next comes the multiplication of the significands 

 

There are three digits to the right of the decimal point for each operand, so the decimal point 

is placed six digits from the right in the product significand 

𝟏𝟎. 𝟐𝟏𝟐𝟎𝟎𝒕𝒆𝒏 

Assuming that we can keep only three digits to the right of the decimal point, the product is 

𝟏𝟎. 𝟐𝟏𝟐 × 𝟏𝟎𝟓 

Step 3 

This product is unnormalized, so we need to normalize it:  

𝟏𝟎. 𝟐𝟏𝟐 × 𝟏𝟎𝟓 = 𝟏. 𝟎𝟐𝟏𝟐 × 𝟏𝟎𝟔 

After the multiplication, the product can be shifted right one digit to put it in normalized form 

by adding 1 to the exponent.  

At this point, we can check for overflow and underflow. Underflow may occur if both 

operands are small that is, if both have large negative exponents. 

Step 4 

We assumed that the significand is only four digits long (excluding the sign), so we must 

round the number. The number 

𝟏. 𝟎𝟐𝟏𝟐 × 𝟏𝟎𝟔 

is rounded to four digits in the significand to 

𝟏. 𝟎𝟐𝟏𝒕𝒆𝒏 × 𝟏𝟎𝟔 

Step 5 

The sign of the product depends on the signs of the original operands. If they are both the same, the 

sign is positive; otherwise, it’s negative.  

Hence, the product is 

+𝟏. 𝟎𝟐𝟏𝒕𝒆𝒏 × 𝟏𝟎𝟔 
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13. SUBWORD PARALLELISM 

 Every desktop microprocessor by definition has its own graphical displays, as transistor 

budgets increased it was inevitable that support would be added for graphics operations.  

 Many graphics systems originally used 8 bits to represent each of the three primary colors 

plus 8 bits for a location of a pixel.  
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 The addition of speakers and  microphones for teleconferencing and video games suggested 

support of sound as  well.  

 Audio samples need more than 8 bits of precision, but 16 bits are sufficient.  

 Every microprocessor has special support so that bytes and halfwords take up  less space 

when stored in memory (see Section 2.9), but due to the infrequency of arithmetic operations 

on these data sizes in typical integer programs, there was little support beyond data transfers.  

 Architects recognized that many graphics and audio applications would perform the same 

operation on vectors of this data.  

 By partitioning the carry chains within a 128-bit adder, a processor could use parallelism to 

perform simultaneous operations on short vectors of sixteen 8-bit operands, eight 16-bit 

operands, four 32-bit operands, or two 64-bit operands. 

  The cost of such partitioned adders was small. Given that the parallelism occurs within a 

wide word, the extensions are classified as subword parallelism.  

 It is also classified under the more general name of data level parallelism. They have been 

also called vector or SIMD, for single instruction, multiple data (see Section 6.6). The rising 

popularity of multimedia applications led to arithmetic instructions that support narrower 

operations thcan easily operate in parallel. 

 For example, ARM added more than 100 instructions in the NEON multimedia instruction 

extension to support subword parallelism, which can be used eithwith ARMv7 or ARMv8. 

  It added 256 bytes of new registers for NEON that can bviewed as 32 registers 8 bytes wide 

or 16 registers 16 bytes wide. NEON supporall the subword data types you can imagine 

except 64-bit fl oating point numbers: 

  8-bit, 16-bit, 32-bit, and 64-bit signed and unsigned integers. 

 32-bit fl oating point numbers. 
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PART – A 
 

ARITHMETIC LOGIC UNIT 

1. What is ALU?[May/june-2016] 

An arithmetic logic unit (ALU) is a digital electronic circuit that performs arithmetic and bitwise 

logical operations on integer binary numbers. It is a fundamental building block of the central 

processing unit (CPU) 

2. State two basic data types implemented in the computer system. 

Based on the number system two basic data types are implemented in the computer system:  

 Fixed point numbers 

 Floating point numbers.  

Representing numbers in such data types is commonly known as fixed point representation and 

floating point representation. 

3. Write a note on scalar data types. 

All of the commonly used data types such as, char, int, short long, float, and double are called 

scalar or base data types because they hold a single data item. 

4. What is signed magnitude representation? 

Signed magnitude representation is a scheme for representing negative integers. It uses one bit to 

indicate the sign. "0" indicates a positive integer, and "1" indicates a negative integer. The rest of 

the bits are used for the magnitude of the number. So -2410 is represented as: 

1001 1000 

The sign "1" means negative 

The magnitude is 24 (in 7-bit binary) 

5. What is one's complement of numbers? Find l's complement of (10101100)2 

The l's complement of a binary number is the number that results when we change all 1/s to zeros and 

the zeros to ones. 

6. What is 2's complement of numbers? Find 2's complement of (01011011)2 

The 2's complement is the binary number that results when we add 1 to the l's complement. It is given 

as 2's complement = l's complement +1. 

ADDITION AND SUBTRACTION 

7. How do you relate addition and subtraction? 

We can relate addition and subtraction operations of numbers by the following relationship: 

(± 𝑨)  −  (+𝑩)  =  (± 𝑨) +  (−𝑩) 

(± 𝑨)  −  (−𝑩)  =  (± 𝑨) +  (+𝑩) 
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8. What is half adder? Draw the half adder circuit 

The logic circuit which performs addition of two binary bits is called a half-adder. 

 

9. What is full adder? Draw the full-adder circuit. 

The circuit which performs addition of three bits (two significant bits and a previous carry) is a 

full-adder. 

 

10. What is a ripple carry adder  

The n-bit parallel adder using n number of full-adder circuits connected in cascade, i.e. the carry 

output of each adder is connected to the carry input of the next higher-order adder is called ripple 

carry adder. 

11. Define overflow rule in addition.[Nov/Dec-2015][Nov/Dec-2016] 

When both operands a and b have the same sign, an overflow occurs when the sign of result does 

not agree with the signs of a and b. 

(+A)+(+B)= -C 

(-A)+(-B)= +C 

12. How overflow occur in subtraction? [May/June 2015] 

Overflow in subtraction occurs when the subtrahend is larger than the minuend.  

(+A)-(-B)= -C 

(-A)-(+B)= +C 

Example:  

 0010 0011 

(-) 0110 1110 

Will cause overflow 

13. Subtract (11011)2 - (100011)2 using 2’s complement.[Nov/Dec-2017]. 

2’s complement=1’s complement +1 

2’s complement of10011 is 
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14. What is guard bit? What are the ways to truncate guard bit?[Nov/Dec-2016]. 

The first two extra bits kept on the right during intermediate calculations of floating point format. 

Several ways, 

1. Chopping 

2. Rounding. 

3. Von-Neumann rounding. 

15. Subtract (11010)2 – (10000)2 using 1’s complement and 2’s complement 

method.[May/June-2017] 

 

MULTIPLICATION 

16. Discuss the principle behind the Booth's multiplier. 

Booth's algorithm generates a 2n-bit product and treats both positive and negative numbers 

uniformly. This algorithm suggest that we can reduce the number of actions required for 

multiplication by representing multiplier as a difference between two numbers. 

17. Discuss the role of Booth's algorithm in the design of fast multipliers. 

To speed-up the multiplication process in the Booth's algorithm a technique called bit-pair 

recoding is used. It is also called modified Booth's algorithm. It halves the maximum number of 

summands. In this technique, the Booth-recoded multiplier bits are grouped in pairs. Then each 

pair is represented by its equivalent single bit multiplier reducing total number of multiplier bits to 

half. 

18. What is combinational multiplier or array multiplier? 

The multiplier which uses n shifts and adds operations to multiply n-bit binary number is 

called combinational multiplier or array multiplier. 
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19. How bit pair recoding of multiplier speeds up the multiplication process? 

It guarantees that the maximum number of summands that must be added is n/2 for n-bit 

operands. 

20. How CSA speeds up multiplication? 

It reduces the time needed to add the summands. Instead of letting the carries ripple along the 

rows, they can be saved and introduced into the next row, at the correct waited position. 

DIVISION 

21. Write down the steps for restoring division. 

The following are the steps for restoring division 

1. Shift A and Q left one binary position. 

2. Subtract divisor from A and place answer back in A (𝑨 ← 𝑨 − 𝑩) 

3. If the sign bit of A is 1, set Q0 to 0 and add divisor back to A, Otherwise, set Q0 to 1. 

4. Repeat steps 1, 2, and 3 n times. 

22. Write down the steps for non-restoring division. 

The following are the steps for non-restoring division 

1. If the sign of A is 0, shift A and Q left one bit position and subtract divisor from A; 

otherwise, shift A and Q left and add divisor to A.  

2. If the sign of A is 0, set Q0 to 1; otherwise, set Q0 to 0. 

3. Repeat steps 1 and 2 for n times. 

4. If the sign of A is 1, add divisor to A. 

23. What is the advantage of non-restoring over restoring division? 

Non restoring division avoids the need for restoring the contents of register after successful 

subtraction. 

24. Divide (1001010)2 / (1000)2 . [Nov/Dec-2017]. 
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FLOATING POINT REPRESENTATION 

25. Define IEEE floating point single and double precision standard. 

The 32-bit standard representation (single-precision representation) occupies a single 32-bit word. 

The 32-bits are divided into three fields as shown below:  

 (field 1) Sign - 1 - bit 

 (field 2) Exponent - 8 - bits  

 (field 3) Mantissa - 23 - bits 

The 64-bit standard representation (double-precision representation) occupies two 32-bit words. 

The 64-bits are divided into three fields as shown below:  

 (field 1) Sign - 1 - bit 

 (field 2) Exponent - 1 - bit 

 (field 3) Mantissa - 52 – bits 

26. Mention the situations under which a processor sets exception flag. 

 Underflow  

 Overflow  

 Divide by zero  

 Inexact Invalid 

27. State the representation of double Precision floating Point number.[Nov/Dec-

2015] 

28. Define underflow and overflow 

UNDERF LOW :  In a single precision, if the number requires an exponent less than -126 or in a 

double precision, if the number requires an exponent less than - 1022 to represent its normalized 

form the underflow occurs. 

OV ERF LOW : In a single precision, if the number requires an exponent greater than + 127; or in a 

double precision, if the number requires an exponent greater than + 1023 to represent its 

normalized form the overflow occurs. 

FLOATING POINT OPERATIONS 

29. State the rules of floating point multiplication. 

1. Add the exponents and subtract bias. (127 in case of single precision numbers and 1023 in 

case of double precision numbers). 

2. Multiply the mantissas and determine the sign of the result. I . 

3. Normalize the result. 

30. State the rules of floating point division. 

1. Subtract exponents and add bias (127 in case of single precision numbers and 1023 in 

case of double precision numbers).  
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2. Divide the mantissas and determine the sign of the result. 

3. Normalize the result. 

31. What do you mean by guard bits? 

The mantissas of initial operands and final results are limited to 24-bits, including the implicit 

leading 1. But if we provide extra bits in the intermediate steps if calculations we can get 

maximum accuracy in the final result. These extra bits used in the intermediate calculations are 

called guard bits. 

32. State the commonly used methods of truncation. 

There are three commonly used methods of truncation 

1. Chopping 

2. Von Neumann rounding 

3. Rounding 

SUBWORD PARALLELISM 

33. What do you mean by subword parallelism? [May/June 2015] ?[May/June-2016] 

Subword Parallelism is a technique that enables the full use of word-oriented datapaths when 

dealing with lower-precision data. It is a form of low-cost, small-scale SIMD parallelism. 

 

PART – B 
 

ARITHMETIC LOGIC UNIT 

1. Explain in detail how a simple Arithmetic Logic Unit can be constructed. 

ADDITION AND SUBTRACTION 

2. Explain the design and working of ripple carry adder in detail. 

3. Explain in detail the principle of carry-look-ahead adder. [Refer Page No:2.5] 

[OR] 

With a neat diagram explain in detail about the logical design of fast adder. 

[Refer Page No:2.5] 

[OR] 

Briefly explain Carry Look Ahead adder [Nov/Dec 2014 - 6M] [Refer Page No:2.5] 

4. Construct a Ripple Carry Adder Circuit and a Carry Look Ahead Adder Circuit to 

find the sum of two number A=10 and B=5 (Use 8 bit binary). 

5. Construct a Ripple Carry Adder Circuit and a Carry Look Ahead Adder Circuit to 

find the sum of two number A=16 and B=5 (Use 8 bit binary). 
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MULTIPLICATION 

6. Explain the sequential version of multiplication and its hardware. [May/June 2015 

– 16M]. [Refer Page No:2.9] 

7. Explain in detail about multiplication algorithm with suitable example and 

diagram.[Nov/Dec-2015] [May-17]  [Refer Page No:2.9] 

8. Define booth multiplication algorithm with suitable example.[May-16] 

9. Explain Booth’s algorithm for the multiplication of signed two’s complement 

numbers. [Dec-16] 

10. Multiply the following pair of signed numbers using Booth`s bit-pair recording of 

the multiplier. A=+13(Multiplicand) and B=-6 (Multiplier) [Nov/Dec 2014 - 10M] 

11. Explain Booth`s Algorithm for multiplication and multiply the following pair using 

the same A=10, B=4. ?[May/june-2016] 

12. Explain Booth`s Algorithm for multiplication and multiply the following pair using 

the same A=16, B=4. 

13. Explain Booth`s Algorithm for multiplication and multiply the following pair using 

the same A=20, B=16. 

DIVISION 
14. Explain in detail the process of restoring and non-restoring division. [Refer Page 

No:2.15] 

15. Explain in detail about division algorithm with suitable example and diagram. 

[Nov/Dec-2015] [Nov/Dec-2016] [Refer Page No:2.15] 

FLOATING POINT OPERATIONS 

16. Write a short note on how floating point numbers are represented in MIPS. [Refer 

Page No:2.17] 

17. Explain briefly about floating point addition and subtraction algorithm. 

[May/june-2016] [Refer Page No:2.20] 

18. Explain how floating point addition is carried out in a computer system. Give an 

example for a binary floating point addition. [May/June 2015 – 16M]. 

19. Explain with an example how Floating Point Multiplication is carried out by a 

computer system. [Refer Page No:2.21] 

 

 

 




