
Unit – IV: Parallelism P a g e | 4.1

CS8491 – Computer Architecture

Unit – IV
PARALLELISM

Parallel processing challenges – Flynn‘s classification – SISD, MIMD, SIMD, SPMD, and

Vector Architectures - Hardware multithreading – Multi-core processors and other Shared

Memory Multiprocessors - Introduction to Graphics Processing Units, Clusters, Warehouse

Scale Computers and other Message-Passing Multiprocessors.

1. INSTRUCTION LEVEL PARALLELISM

Instruction level parallelism is the kind of parallelism among instructions. It can exist when

instructions in a sequence are independent and thus can be executed in parallel by

overlapping .

PIPELINING is a technique that runs programs faster by overlapping the execution of instructions.

This is one example of instruction level parallelism.

There are two primary methods for increasing the potential amount of instruction level parallelism.

[1] Increasing the depth of the pipeline to overlap more instructions.

[2] Replicate the internal components of the computer.

1.1. MULTIPLE ISSUE

Multiple issue is a technique used to launch multiple instructions in every pipeline stage. Launching

multiple instructions per stage will allow the instruction execution rate to exceed the clock rate or the

CPI to be less than 1.

There are two major ways to implement a multiple issue processor such as

[1] Static multiple issue

[2] Dynamic multiple issue

The major differences between these two kinds of issues are the division of work between the

compiler and the hardware, because the division of work decides whether decisions are made at

compile time or during execution time.

1.1.1. STATIC MULTIPLE ISSUE

It is an approach to implement a multiple issue processor where many decisions are made by the

compiler before execution.

1.1.2. DYNAMIC MULTIPLE ISSUE

It is an approach to implement a multiple issue processor where many decisions are made during

execution by the processor.

Unit – IV: Parallelism P a g e | 4.2

CS8491 – Computer Architecture

1.2. MULTIPLE ISSUE PIPELINE

There are two primary and distinct responsibilities that must be dealt with in a multiple issue pipeline

such as

[1] Packaging instructions into issue slots

[2] Dealing with data and control hazards

1.2.1. PACKAGING INSTRUCTIONS INTO ISSUE SLOTS

Issue slots are the positions from which instructions could issue in a given clock cycle and it

correspond to positions at the starting blocks for a sprint.

In static issue processors, this process is partially handled by the compiler and in case of dynamic

issue processors it is dealt with runtime by the processor.

1.2.2. DEALING WITH DATA AND CONTROL HAZARDS

In static issue processors, the compiler handled some or all of the data and control hazards statically.

In dynamic issue processors at least some classes of hazards using hardware techniques

operating at execution time.

1.3. CONCEPT OF SPECULATION

One of the most important methods for finding and exploiting more instruction level parallelism is

speculation. It is an approach that allows the compiler or the processor to guess about the properties of

an instruction, so to enable execution that begin for other instructions may depend on the speculated

instruction.

Speculation is an approach whereby the compiler or process guesses the outcome of an instruction to

remove it as dependence in executing other instructions.

For example, we may speculate on the outcome of a branch, so that instructions after the branch

could be executed earlier.

Speculation may be done in the compiler or by the hardware. For example, the compiler can use

speculation to reorder instructions, moving an instruction across a branch or load across a store.

1.3.1. DIFFICULTY WITH SPECULATION

Difficulty with speculation is it may be wrong. So any speculation mechanism must include a method

to check if the guess was right and a method to UNROLL OR BACK OUT THE EFFECTS of the

instructions was executed speculatively. But it will add complexity.

The recovery mechanisms used for incorrect speculation is done in two ways:

[1] Hardware speculation

[2] Software speculation

In hardware speculation the processor usually buffers the speculative results until it knows they are no

longer speculative.

Unit – IV: Parallelism P a g e | 4.3

CS8491 – Computer Architecture

If the speculation is correct, the instructions are completed by allowing the contents of the buffers to

be written to the registers or memory:

If the speculation is incorrect, the hardware flushes the buffers and re-executes the correct

instruction sequence.

In software speculation the compiler usually inserts additional instructions that check

the accuracy of the speculation and, provide a fix up routine to use when- the speculation is incorrect.

Speculation can improve performance when it is done properly and decrease performance when it is

done carelessly.

1.4. STATIC MULTIPLE ISSUE PROCESSORS

In static multiple issue, all processors use the compiler to assist with packaging instructions and

handling hazards. It will use the issue packet.

Issue packet is set of instructions that issues together in one clock cycle and the packet may be

determined statically by the compiler or dynamically by the processor .

Static multiple issue processor usually restricts the mix of instructions that can be initiated in a given

clock cycle. So issue packet is a single instruction that allows several operations in certain predefined

fields. This approach is called VERY LONG INSTRUCTION WORD (VLIS).

Very Long Instruction Word is a style of instruction set architecture that launches many operations

that are defined to be independent in a single wide instruction and it has many separate opcode fields.

In most static issue processors compiler take some of the responsibility for handling data and control

hazards. The responsibilities taken by the compiler are

[1] Static branch prediction

[2] Code scheduling to reduce or prevent all hazards

1.5. DYNAMIC MULTIPLE ISSUE PROCESSORS

Dynamic multiple issue processors are also known as super scalar processors or simply

superscalars .

Super scalar is an advanced pipelining technique that enables the processor to execute more than one

instruction per clock cycle by selecting them during execution.

Achieving good performance on dynamic multiple issue processors it requires the

compiler to schedule instructions to move dependences and improve the instruction issue rate.

Even with such compiler scheduling, there is an important difference between simple superscalar and

a VLIW processor.

In superscalar processor whether the code has scheduled or not it is given to the hardware to

execute correctly .

Unit – IV: Parallelism P a g e | 4.4

CS8491 – Computer Architecture

In superscalar processor, the compiled code can run always correctly independent of the issue rate or

pipeline structure of the processor. In VLIW designs, this has not the case and it requires

recompilation when moving across different processor models.

Some static issue processors the code can run correctly across different implementations but

it requires poorly compilation.

Many superscalars extend the basic framework of dynamic issue decisions by

including dynamic pipeline scheduling.

Dynamic pipeline scheduling chooses which instructions to execute in a given clock cycle while

trying to avoid hazards and stalls.

Consider the simple example to avoid a data hazard , consider the following code sequence

lw $t0, 20($s2)

addu $tl, $t0, $t2

sub $s4, $s4, $t3

slti $t5, $s4,20

In that code, even though the sub instruction is ready to execute but it must wait for the lw and addu

instruction to complete first. It takes many clock cycles if memory is slow.

DYNAMIC PIPELINE SCHEDULING allows such hazards to be avoided either fully or partially.

1.5.1. DYNAMIC PIPELINE SCHEDULING

Dynamic pipeline scheduling chooses which instructions to execute next by REORDERING THE

INSTRUCTIONS it avoid stalls. In such processors, the pipeline is divided into three major units.

[1] An instruction fetch and issue unit

[2] Multiple functional units

[3] Commit unit

Below figure shows this model. The final step of updating the state is also called retirement or

graduation.

The first unit fetches the instructions, decodes them and sends each instruction to a corresponding

functional unit for execution.

Each functional unit has a buffer that is called reservation stations . It holds the operands and

operation.

Once the buffer contains all its operands and the functional units is ready to execute then the result is

calculated.

Unit – IV: Parallelism P a g e | 4.5

CS8491 – Computer Architecture

When the result is completed, it is sent to any reservation stations waiting for this particular result as

well as to the commit unit .

The result must be buffered until it is safe to put it into the register file or for a store or into memory.

The buffer in the commit unit called the reorder buffer . It holds the results in a dynamically

scheduled processor until it is safe to store the results into memory or a register.

Once a register is committed to the register file it can be fetched directly from there just like a

normal pipeline .

Form of register renaming is obtained by combination of buffering operands in the reservation

stations and results in the reorder buffer.

Below two steps are explained how the renaming of register is obtained.

STEP 1

When an instruction issues, it is copied to a reservation station for the appropriate functional

unit.

If any operands are available in the register file or reorder buffer are also

immediately copied into the reservation station.

The instruction is buffered in the reservation station until all the operands and the

functional units are available.

For the issuing instruction, the register copy of the operand is no longer required and for a

write to that register occurred means the value could be overwritten .

STEP 2

If an operand is not in the register file or reorder buffer, it must be waiting to be produced by

a functional Unit.

The name of the functional unit will produce the result in tracked, when the functional unit

eventually produces the result it is copied directly into the waiting reservation station by

Unit – IV: Parallelism P a g e | 4.6

CS8491 – Computer Architecture

passing the registers from functional unit. These two steps use the reorder buffer and the,

reservation stations to implement register renaming .

1.5.1.1. OUT OF ORDER EXECUTION

The processor executes the instructions in some order that preserves the DATA FLOW ORDER of the

program. This style of execution is called OUT OF ORDER EXECUTION.

1.5.1.2. IN-ORDER COMMIT

A commit in which the results of pipelined execution are written to the programmer visible state in the

same order how the instructions are fetched .

Dynamic scheduling also use hardware based speculation for branch outcomes. By predicting the

direction of a branch, a dynamically scheduled processor can continue to fetch and execute

instructions along the predicted path .

A speculative, dynamically scheduled pipeline can also support speculation on load address ,

allowing load store reordering and using the commit unit to avoid incorrect speculation.

2. CHALLENGES IN PARALLEL PROCESSING

Parallel processing will increase the performance of processor and it will reduce the utilization time to

execute a task. But obtaining the parallel processing is not an easy task. We have difficulty in writing

programs to execute a parallel process.

The difficulty with parallelism is not in the hardware side it is in the software side. Because some

important application programs have been rewritten to complete tasks sooner on multiprocessors.

It is difficult to write software that uses multiple processors to complete one task faster and the

problem gets worse as the number of processors increases .

Developing the parallel processing programs are so harder than the sequential programs because of

the following reasons:

First reason is we must get better performance or better energy efficiency from-a parallel processing

program on a multiprocessor.

If we would not have efficient energy then we have to use a sequential program on a

uniprocessor because sequential programming is very simple.

Using uniprocessor we can solve the problem in developing parallel processing programs. Because

uniprocessor design techniques such as superscalar and out of order execution take advantage of

instruction level parallelism.

Uniprocessor design techniques will reduce the demand for rewriting programs for multiprocessors.

If number of processors level increased means it is more difficult to write parallel processing

programs. Because of the following reasons we cannot get parallel processing programs as faster the

sequential programs. The reasons are

Unit – IV: Parallelism P a g e | 4.7

CS8491 – Computer Architecture

[1] Scheduling

[2] Partitioning the work into parallel pieces

[3] Balancing the load evenly between the workers

[4] Time to synchronize

[5] Overhead for communication between the parties

These are the five most challenges the developers has to face to write a parallel processing program.

2.1. SCHEDULING

Scheduling is the method by which threads, processes or data flows are given access to system

resources (e.g processor time, communications bandwidth).

Scheduling is done to load balance and share system resources effectively or achieve a target

quality of service.

Scheduling can be done in various fields among that process scheduling is more important, because in

parallel processing, we need to schedule the process correctly. Process scheduling can be done in

following ways:

[1] Long term scheduling

[2] Medium term scheduling

[3] Short term scheduling

[4] Dispatcher

2.2. PARTITIONING THE WORK

The task must be broken into equal number of pieces because otherwise some task may be idle while

waiting for the ones with larger pieces to finish. To obtain parallel processing task must be divided

into equally to all the processor. Then only we can avoid the idle time of any processor.

2.3. BALANCING THE LOAD

Load balancing is the process of dividing the amount of work that a computer has to do between two

or more processor. So that more work gets done in the same amount of time and in general all process

get served faster. Work load has to be distributed evenly between the processor to obtain parallel

processing task.

2.4. TIME TO SYNCHRONIZE

Synchronization is the most important challenge in parallel processing. Because all the

processor have equal work load so it must complete the task within specific time period .

For parallel processing program it must have time to synchronization process, because if any process

does not complete the task within specific time period then we cannot obtain parallel processing.

Unit – IV: Parallelism P a g e | 4.8

CS8491 – Computer Architecture

2.5. INCREASING SCALE-UP

Two methods are found to increase the scale up, such methods are

[1] Strong scaling

[2] Weak scaling

2.5.1. STRONG SCALING

In this method speed up is achieved on a multiprocessor without increasing the size of the problem.

"Strong scaling means measuring speed up while keeping the problem size fixed"

2.5.2. WEAK SCALING

In this method speed up is achieved on a multiprocessor while increasing the size of the problem

proportionally to the increase in the number of processors.

"Weak scaling means the problem size grows proportionally to the increase in the number of

processors".

Let's assume that the size of the problem is M is the working set in main memory and we have P

processors. Then the memory per processor for strong scaling is approximately M/P and for weak

scaling it is approximately M. By considering the memory hierarchy it is easy to know that weak

scaling being easier than strong scaling.

But if the weakly scaled dataset no longer fits in the last level cache of a multicore microprocessor

then the resulting performance could be much worse than by using strong scaling.

Depending on the application we can select the scaling approach.

3. FLYNN`S CLASSIFICATION

Flynn s classification divides parallel hardware into four broad groups such as

[1] Single Instruction stream Single Data stream (SISD)

[2] Single Instruction stream Multiple Data stream (S1MD)

[3] Multiple Instruction stream Single Data stream (MISD)

[4] Multiple Instruction stream Multiple Data stream (MIMD)

 Single instruction Multiple instruction Single program Multiple program

Single data SISD MISD

Multiple data SIMD MIMD SPMD MPMD

3.1. SINGLE INSTRUCTION, SINGLE DATA STREAM (SISD)

A sequential computer which exploits no parallelism in either the instruction or data streams. Single

CONTROL UNIT (CU) fetches single INSTRUCTION STREAM (IS) from memory. The CU then

Unit – IV: Parallelism P a g e | 4.9

CS8491 – Computer Architecture

generates appropriate control signals to direct single PROCESSING ELEMENT (PE) to operate on

single DATA STREAM (DS) i.e. one operation at a time.

Examples of SISD architecture are the traditional uniprocessor machines like a PC (currently

manufactured PCs have multiple cores) or old mainframes.

3.2. SINGLE INSTRUCTION, MULTIPLE DATA STREAMS (SIMD)

A computer which exploits multiple data streams against a single instruction stream to perform

operations which may be naturally parallelized . For example, an array processor or GPU.

3.3. MULTIPLE INSTRUCTION, SINGLE DATA STREAM (MISD)

Multiple instructions operate on a single data stream. Uncommon architecture which is generally used

for fault tolerance. Heterogeneous systems operate on the same data stream and must agree on

the result. Examples include the Space Shuttle flight control computer.

Unit – IV: Parallelism P a g e | 4.10

CS8491 – Computer Architecture

3.4. MULTIPLE INSTRUCTION, MULTIPLE DATA STREAMS (MIMD)

Multiple autonomous processors simultaneously executing different instructions on different data.

Distributed systems are generally recognized to be MIMD architectures; either exploiting a single

shared memory space or a distributed memory space . A multi-coresuperscalar

processor is an MIMD processor.

Further MIMD can be divided into two categories

3.4.1. SPMD

Single Program, Multiple Data: multiple autonomous processors simultaneously executing the same

program (but at independent points, rather than in the lockstep that SIMD imposes) on different data.

Also referred to as 'Single Process, multiple data' - the use of this terminology for SPMD is

erroneous and should be avoided, as SPMD is a parallel execution model and assumes multiple

Unit – IV: Parallelism P a g e | 4.11

CS8491 – Computer Architecture

cooperating processes executing a program. SPMD is the most common style of parallel

programming.

3.4.2. MPMD

Multiple Program, Multiple Data: multiple autonomous processors simultaneously operating at least 2

independent programs. Typically such systems pick one node to be the "host" ("the explicit

host/node programming model") or "manager" (the "Manager/Worker" strategy), which runs one

program that farms out data to all the other nodes which all run a second program.

3.5. VECTOR ARCHITECTURE

 SIMD computers operate on vectors of data and it uses vector architectures, the vector

architectures pipelined the ALU to get good performance at lower cost.

 The basic philosophy of vector architecture is to collect data elements from memory, put them

in order into a large set of registers, operate on them sequentially in registers using pipelined

execution units, and then write the results back to memory.

 A key feature of vector architectures is then a set of vector registers. Thus, a vector

architecture might have 32 vector registers, each with 64-bit elements.

3.5.1. VECTOR VERSUS SCALAR

 Vector instructions have several important properties compared to conventional instruction

set architectures, which are called scalar architectures in this context:

 A single vector instruction specifies a great deal of work it is equivalent to executing an

entire loop. The instruction fetch and decode bandwidth needed is dramatically reduced.

 By using a vector instruction, the compiler or programmer indicates that the computation

of each result in the vector is independent of the computation of other results in the same

vector, so hardware does not have to check for data hazards within a vector instruction.

 Vector architectures and compilers have a reputation of making it much easier than when

using MIMD multiprocessors to write efficient applications when they contain data-level

parallelism.

 Hardware need only check for data hazards between two vector instructions once per

vector operand, not once for every element within the vectors.

 Reduced checking can save energy as well as time. Vector instructions that access

memory have a known access pattern. If the vectors elements are all adjacent, then

fetching the vector from a set of heavily interleaved memory banks works very well.

Thus, the cost of the latency to main memory is seen only once for the entire vector,

rather than once for each word of the vector.

Unit – IV: Parallelism P a g e | 4.12

CS8491 – Computer Architecture

3.5.2. VECTOR VERSUS MULTIMEDIA EXTENSIONS

 Like multimedia extensions found in the x86 AVX instructions, a vector instruction specifies

multiple operations.

 Multimedia extensions typically specify a few operations while vector specifies dozens of

operations. Unlike multimedia extensions, the number of elements in a vector operation is not

in the opcode but in a separate register.

 Different versions of the vector architecture can be implemented with a different number of

elements just by changing the contents of that register and hence retain binary compatibility.

 Vectors support both strided accesses, where the hardware loads every nth data element in

memory, and indexed accesses, where hardware finds the addresses of the items to be loaded

in a vector register. Indexed accesses are also called gather scatter.

 Like multimedia extensions, vector architectures easily capture the flexibility in data widths,

so it is easy to make a vector operation work on 32 64-bit data elements or 64 32-bit data

elements or 128 16-bit data elements or 256 8-bit data elements.

vector lane: One or more vector functional units and a portion of the vector register file. Inspired by

lanes on highways that increase traffic speed, multiple lanes execute vector operations

simultaneously.

 The vector register storage is divided across the lanes with each lane holding every

fourth element of each vector register.

 Three vector functional units are FP add,FP multiply and a load store unit.

 Each of the vector arithmetic unit contains four execution pipelines,one per lane

which acts in concert to complete a single vector execution.

 Each section of the vector register file only needs to provide enough read and write

ports for functional units local to its lane.

VECTOR ARCHITECTURE MULTIMEDIA EXTENSIONS

It specifies dozens of operations. It specifies a few operations.

Number of element in a vector operation is

not in the opcode.
Number of element in multimedia extension.

Vector has data transfers need to be

contiguous.

Multimedia extension has data transfers need

to be contiguous.

Unit – IV: Parallelism P a g e | 4.13

CS8491 – Computer Architecture

4. HARDWARE MULTITHREADING

Hardware multithreading allows multiple threads to share the functional units of a single processor in

an overlapping fashion try to utilize the hardware resources efficiently. To permit this sharing, the

processor must duplicate the independent state of each thread.

For example, each thread would have a separate copy of the register file and the program counter. The

memory itself can be shared through the virtual memory mechanisms it already support

multiprogramming.

Hardware multithreading increase the utilization of a processor by switching to another thread when

one thread is stalled. Hardware must support the ability to change to a different thread relatively

quickly.

Thread is a light weight process and threads share a single address space but processes don't share.

Thread switch is more efficient than a process switch. Process includes one or more threads, the

address space and the operating system state. Process switch invokes the operating system but not a

thread switch.

Hardware multithreading has two main approaches such as

[1] Fine grained multithreading

[2] Coarse grained multithreading

4.1. FINE GRAINED MULTITHREADING

Fine grained multithreading is a version of hardware multithreading that implies switching between

threads after every instruction.

This interleaving is done in a round robin fashion, skipping any threads that are stalled at that clock

cycle. To make this multithreading in practical, the processor must be able to switch threads on every

clock cycle.

4.1.1. ADVANTAGE

It can hide the throughput losses that arise from both short and long stalls because instruction from

other threads can be executed when one thread stalls.

4.1.2. DISADVANTAGE

It slows down the execution of the individual threads because thread that is ready to execute without

stalls will be delayed by instructions from other threads.

4.2. COARSE GRAINED MULTITHREADING

Coarse grained multithreading is a version of hardware multithreading that implies switching between

thread only after significant events such as last level cache miss.

Unit – IV: Parallelism P a g e | 4.14

CS8491 – Computer Architecture

This change need to have threads switching must be fast and is much less likely to slow down the

execution of an individual thread.

Because instructions from other threads will only be issued when a thread encounters a costly stall.

4.2.1. DRAWBACK

It is limited in its ability to overcome throughput losses especially from shorter stalls.

This- limitation arises from the pipeline start-up costs of coarse grained multithreading. Because a

processor with coarse grained multithreading issues instructions from a single thread.

4.2.2. BENEFIT

The new thread will begins executing after the stall must fill the pipeline before instructions will be

able to complete.

Due to this start-up overhead, coarse grained multithreading is more useful for reducing the penalty of

high cost stalls.

4.3. SIMULTANEOUS MULTITHREADING (SMT)

Simultaneous multithreading is a variation on hardware multithreading that uses the resources of a

multiple issue, dynamically scheduled pipelined processor to exploit thread level parallelism at the

same time it exploits instruction level parallelism.

It has multiple processors and more functional unit parallelism available than most single threads can

effectively use.

It has register renaming and dynamic scheduling policy with these features the following task can be

obtained.

Multiple instructions, from independent threads can be issued without regard to the dependences

among them and the resolution of the dependences can be handled by the dynamic scheduling

capability.

SMT relies on the existing dynamic mechanisms, it does not switch resources every cycle.

SMT is always executing instructions from multiple threads, leaving it up to the hardware to associate

instruction slots and renamed registers with their proper threads:

The top portion shows how four threads execute independently on a superscalar with no

multithreading support.

Unit – IV: Parallelism P a g e | 4.15

CS8491 – Computer Architecture

The bottom portion shows how the four threads would be combined to execute on the processor more

efficiently using three multithreading options.

[1] A superscalar with coarse grained multithreading

[2] A superscalar with fine grained multithreading

[3] A superscalar, with simultaneous multithreading

The horizontal dimension represents the instruction issue capability in each clock cycle and vertical

dimension represents a sequence of clock cycles.

In the superscalar without hardware multithreading (top portion) support the use of issue slots is

limited by a lack of instruction level parallelism. A major stall such as an instruction cache miss can

leave the entire processor.

4.4. COARSE GRAINED MULTITHREADING

In the coarse grained multithreading superscalar, the long stalls are hidden by switching to another

thread that uses the resources of the processor. It will reduce the number of completely idle clock

cycle and the pipeline start up overhead still leads to idle cycles.

4.5. FINE GRAINED MULTITHREADING

In fine grained multithreading the interleaving of threads mostly eliminates idle clock cycles. Because

only a single thread issues instructions in a given clock cycle.

In these multithreading limitations in instruction level parallelism will lead to idle slots within some

clock cycles.

Unit – IV: Parallelism P a g e | 4.16

CS8491 – Computer Architecture

4.6. SIMULTANEOUS MULTITHREADING

In the SMT thread level parallelism and instruction level parallelism both are exploited with multiple

threads using the issue slots in a single clock cycle. Ideally, the issue slot usage is limited by

imbalances in the resource needs and resource availability over multiple threads, but in practice other

factors can restrict how many slots are used.

Multiple threads can utilize the resources of a single processor more effectively.

5. MULTICORE PROCESSORS

Multiple threads can utilize the resources of a single processor more effectively.

Hardware multithreading improved the efficiency of processor but it has big challenge to deliver on

the performance potential of MOORE'S LAW by efficiently programming the increasing number of

processors per chip.

Rewriting old programs to run well on parallel hardware is more difficult. Computer designers must

do something to overcome these difficulties.

Solution for above program is using a single physical address space for all

processors so that programs need not concern themselves with where their data is and programs

may be executed in parallel.

In this approach, all variables of a program can be made available at any time to any

processor . Using separate address space per processor also we can solve above problem.

When the physical address space is common then the hardware typically provides cache coherence to

give a consistent view of the shared memory.

Shared memory multiprocessor allows programmer to use single physical address space

across all processors which is always suitable for multicore chips.

In shared address multiprocessor, processors can communicate through variables in memory with all

processors capable of accessing any memory location via loads and stores.

Below figure shows the classic organization of a shared memory multiprocessor. It can run

independent jobs in their own VIRTUAL ADDRESS SPACESeven if they all share a physical address

space.

Unit – IV: Parallelism P a g e | 4.17

CS8491 – Computer Architecture

5.1. TYPES OF SINGLE ADDRESS SPACE MULTIPROCESSOR

Single address space multiprocessor comes in two styles such as

[1] Uniform Memory Access (UMA)

[2] Non Uniform Memory Access (NUMA)

Uniform Memory Access is a multiprocessor in which latency to any word in main

memory is same no matter which processor requests the access.

Non Uniform Memory Access is a type of single address space multiprocessor in which some

memory accesses are much faster than others depending on which proceed: asks for

which word.

Sl.

No.
Uniform Memory Access Non Uniform Memory Access

1 Programming challenges are easy. Programming challenges are hard.

2 UMA machines can scale small sizes. NUMA machines can scale to larger sizes.

3 It has higher latency. It has lower latency to nearby memory.

5.2. SYNCHRONIZATION

As processors operating in parallel will normally share data, they also need to coordinate when

operating on shared data otherwise one processor can start working on data before another is finished

with it. This coordination is called synchronization.

Synchronization is the process of coordinating the behaviour of two or more; processes which may be

running on different processors.

When sharing is supported with a single address space there must be a separate mechanism

for synchronizations such as called LOCK.

Lock is a synchronization device that allows access to data to only one processor at time and other

processors interested in shared, data must wait until the original processor unlocks the variable.

Unit – IV: Parallelism P a g e | 4.18

CS8491 – Computer Architecture

6. INTRODUCTION TO GRAPHICAL PROCESSING UNITS

 A major driving force for improving graphics processing was the computer game industry,

both on PC’s and in dedicated game consoles such as the sony playstation.

 Moreover there are increasing demands for computer generated images for TV advertisements

and movies.

 Moore’s Law increased the number of transistors available to microprocessors, it therefore

made sense to improve graphics processing.As the graphics processors increased in power,

they earned the name Graphics Processing Units or GPUs to distinguish themselves from

CPUs.

 Here are some of the key characteristics as to how GPUs vary from CPUs:

 GPUs are accelerators that supplement a CPU, so they do not need be able to perform all

the tasks of a CPU.

 The GPU problems sizes are typically hundreds of megabytes to gigabytes, but not

hundreds of gigabytes to terabytes.

 GPU’s are highly multi threaded.

 GPU’s use thread switching to hide memory latency.

 CPU supports for sequential coding while GPU support for parallel coding.

6.1. AN INTRODUCTION TO THE NVDIA GPU ARCHITECTURE

 NVIDIA systems as our example as they are representative of GPU architectures.

 Like vector architectures, GPUs work well only with data-level parallel problems.

 Unlike most vector architectures, GPUs also rely on hardware multithreading within a single

multi-threaded SIMD processor to hide memory latency.

 A multithreaded SIMD processor is similar to a Vector Processor, but the former has many

parallel functional units instead of just a few that are deeply pipelined, as does the latter.

 For example, NVIDIA has four implementations of the Fermi architecture at different price

points with 7, 11, 14, or 15 multithreaded SIMD processors.

SIMD THREAD SCHEDULER:

 The SIMD Thread Scheduler includes a controller that lets it know which threads of SIMD

instructions are ready to run, and then it sends them off to a dispatch unit to be run on the

multithreaded SIMD processor.

 It is identical to a hardware thread scheduler in a traditional multithreaded processor except

that it is scheduling threads of SIMD instructions.

 Thus, GPU hardware has two levels of hardware schedulers:

1. The Thread Block Scheduler that assigns blocks of threads to multithreaded

SIMD processors, and

Unit – IV: Parallelism P a g e | 4.19

CS8491 – Computer Architecture

2. The SIMD Thread Scheduler within a SIMD processor, which schedules

when SIMD threads should run.

 The number of lanes per SIMD processor varies across GPU generations.

 Each thread of SIMD instruction is executed in lock step and scheduled at the beginning.

 The SIMD thread scheduler can pick whatever thread of SIMD instruction is ready and need

not stick with the next SIMD instruction in the sequence within a thread.

 The scoreboard is needed because memory access instructions can take an unpredictable

number of clock cycles.

 The scheduler selects a ready thread of SIMD instruction and issues an instruction

synchronously to all the SIMD lanes executing the SIMD thread.

 Because of threads of instructions are independent and scheduler may select a different SIMD

thread each time.

Unit – IV: Parallelism P a g e | 4.20

CS8491 – Computer Architecture

 Each multithreaded SIMD processor must load 32 elements of two vectors from memory into

registers to perform the multiple by reading and writing registers and store the product back

from registers into memory.

6.2. NVIDIA GPU MEMORY STRUCTURES

 GPU memory is shared by all grids and local memory is shared by all threads of SIMD

instructions within a thread block.

Private Memory:

It is used for the stack frame for spilling registers and for private variables that don’t fit in the

registers. SIMD lanes do not share private memories.

Local Memory:

It is shared by the SIMD lanes within a multithreaded SIMD processor, but this memory is not shared

between multithreaded SIMD processors.

GPU Memory:

 It is an Off-chip DRAM shared by the whole GPU and all thread blocks GPU memory.

 The system Procssor, called the host can read or write GPU memory.Local memory is

unavailable to the host and it is private to each multithreaded SIMD processor private

memories are unavailable to the host.

 To improve memory bandwidth and reduce overhead, data transfer instructions

coalesce individual parallel thread requests from the same SIMD thread together into a

single memory block requests when the addresses fall into the same block.

Unit – IV: Parallelism P a g e | 4.21

CS8491 – Computer Architecture

6.3. PUTTING GPU’S INTO PERSPECTIVE

 At a high level, multicore computers with SIMD instruction extensions do share similarities

with GPUs.

 Both are MIMDs whose processors use multiple SIMD lanes, although GPUs have more

processors and many more lanes.

 Both use hardware multithreading to improve processor utilization, although GPUs have

hardware support for many more threads.

 Both use caches, although GPUs use smaller streaming caches and multicore computers use

large multilevel caches that try to contain whole working sets completely.

 Both use a 64-bit address space, although the physical main memory is much smaller in

GPUs. While GPUs support memory protection at the page level, they do not yet support

demand paging. SIMD processors are also similar to vector processors.

 The biggest difference is multithreading, which is fundamental to GPUs and missing from

most vector processors.

 GPUs and CPUs do not go back in computer architecture genealogy to a common ancestor;

there is no Missing Link that explains both.

Unit – IV: Parallelism P a g e | 4.22

CS8491 – Computer Architecture

7. MESSAGE PASIING MULTIPROCESSORS

 Message passing is defined as communication between multiple processors by explicitly

sending and receiving information. It has two kinds of routine such as,

 Send message routine

 Receive message routine.

Send message routine: It is used by a processor in machines with private memories to pass a

message to another processors.

Receive message routine: It is used by a processor in machines with private memories to

pass a message to another processors.

 The alternative approach to sharing an address space is for the processors to each have their

own private physical address space.

 This alternative multiprocessor must communicate via explicit message passing, which

traditionally is the name of such style of computers.

 Provided the system has routines to send and receive messages, coordination is built in with

message passing, since one processor knows when a message is sent, and the receiving

processor knows when a message arrives.

 If the sender needs confirmation that the message has arrived, the receiving processor can

then send an acknowledgment message back to the sender.

FIGURE 6.13Classic organization of a multiprocessor with multiple private address

spaces, traditionally called a message-passing multiprocessor.

 There have been several attempts to build large-scale computers based on high-performance

message-passing networks, and they do offer better absolute communication performance

than clusters built using local area networks. Indeed, many supercomputers today use custom

networks.

 The problem is that they are much more expensive than local area networks like Ethernet.

Unit – IV: Parallelism P a g e | 4.23

CS8491 – Computer Architecture

 Few applications today outside of high performance computing can justify the higher

communication performance, given the much higher costs.

8. CLUSTERS

 Clusters Collections of computers connected via I/O over standard network switches to form a

message-passing multiprocessor.

 In particular, task-level parallelism and applications with little communication like Web

search, mail servers, and file servers do not require shared addressing to run well.

 As a result, clusters have become the most widespread example today of the message-passing

parallel computer.

 cluster consists of independent computers connected through a local area network, it is much

easier to replace a computer without bringing down the system in a cluster than in an shared

memory multiprocessor.

 Fundamentally, the shared address means that it is difficult to isolate a processor and replace

it without heroic work by the operating system and in the physical design of the server.

 It is also easy for clusters to scale down gracefully when a server fails, thereby improving

dependability.

 Since the cluster software is a layer that runs on top of the local operating systems running on

each computer, it is much easier to disconnect and replace a broken computer.

 Given that clusters are constructed from whole computers and independent, scalable

networks, this isolation also makes it easier to expand the system without bringing down the

application that runs on top of the cluster.

 Their lower cost, higher availability, and rapid, incremental expandability make clusters

attractive to service Internet providers, despite their poorer communication performance when

compared to large-scale shared memory multiprocessors.

9. WAREHOUSE SCALE COMPUTERS

 Internet services, such as those described above, necessitated the construction of new

buildings to house, power, and cool 100,000 servers.

 It is classified as just large clusters, their architecture and operation are more sophisticated.

 They act as one giant computer and cost on the order of $150Mfor the building, the electrical

and cooling infrastructure, the servers, and the networking equipment that connects and

houses 50,000 to 100,000 servers. We consider them a new class of computer, called

Warehouse-Scale Computers (WSC).

 While they share some common goals with servers, WSCs have three major distinctions:

i. Ample, easy parallelism:

Unit – IV: Parallelism P a g e | 4.24

CS8491 – Computer Architecture

 A concern for a server architect is whether the applications in the targeted

marketplace have enough parallelism to justify the amount of parallel hardware.

 A WSC architect has no such concern.

 First, batch applications like Map Reduce benefit from the large number of

independent data sets that need independent processing, such as billions of Web

pages from a Web crawl.

 Second, interactive Internet service applications, also known as Soft Request-

Level Parallelism, as many independent efforts can proceed in parallel naturally

with little need for communication or synchronization.

ii. Operational Costs Count:

 Traditionally, server architects design their systems for peak performance within a

cost budget and worry about energy only to make sure they don’t exceed the

cooling capacity of their enclosure.

 They usually ignored operational costs of a server, assuming that they pale in

comparison to purchase costs.

iii. Scale and the Opportunities/Problems Associated with Scale:

 To construct a single WSC, you must purchase 100,000 servers along with the

supporting infrastructure, which means volume discounts. Hence, WSCs are so

massive internally that you get economy of scale even if there are not many

WSCs.

 These economies of scale led to cloud computing, as the lower per unit costs of a

WSC meant that cloud companies could rent servers at a profitable rate and still be

below what it costs outsiders to do it themselves.

 Moore’s Law and the increasing number of cores per chip, we now need networks

inside a chip as well, so these topologies are important in the small as well as in

the large.

Unit – IV: Parallelism P a g e | 4.25

CS8491 – Computer Architecture

PART – A

INSTRUCTION LEVEL PARALLELISM

1. What is meant by multiprocessor?

Multiprocessor is a computer system with at least two processors. This computer is contrast to a

uniprocessor.

2. What is ILP?[Nov/Dec-2015][Nov/Dec-2016][april/May-2017].

Instruction level parallelism is the kind of parallelism among instructions. It can exist when

instructions in a sequence are independent and thus can be executed in parallel by overlapping.

3. State the need for instruction level parallelism.[May/June-2016]

Instruction level parallelism can be used to improve the program execution performance by

causing individual machines operations to execute in parallel.

4. What is meant by task level parallelism?

Task level parallelism also called as process level parallelism. Task level parallelism utilizing

multiple processors by running independent programs simultaneously.

5. What is parallel processing program?

Parallel processing program is a single program that runs on multiple processors simultaneously.

6. What is cluster?

Cluster is a set of computers connected over a local area network that function as a single large

multiprocessor;

7. What is a multicore microprocessor?

A microprocessor containing multiple processors (cores) in a single integrated circuit. Virtually

all microprocessors today in desktops and servers are multicore.

8. What is shared memory multiprocessor?

Shared memory multiprocessor is a parallel processor with a single physical address space.

9. What are the challenges includes in parallel programming?

Parallel programming challenges includes scheduling, partitioning the work into parallel pieces,

balancing the loud evenly between the workers, time to synchronize and overhead for

communication between the parties.

Unit – IV: Parallelism P a g e | 4.26

CS8491 – Computer Architecture

10. How to get good speed up on a multiprocessor?

To achieve a good speed up on a multiprocessor problem size must be fixed and the problem size

is increased means it is hard to get good speed up.

PARALLEL PROCESSING CHALLENGES

11. Write two methods used to increase the scale up.

Two methods to increase the scale up are

[1] Strong scaling

[2] Weak scaling

12. What is strong scaling?

In these methods speed up achieved on a multiprocessor without increasing the size of the

problem.

"Strong scaling means measuring speed up while keeping the problem sizefixed".

13. What is weak scaling?

In this method speed up is achieved on a multiprocessor while increasing the size of the problem

proportionally to the increase in the number of processors.

14. Differentiate between strong scaling and weak scaling [May/June

2015][Nov/Dec-2017].

Strong Scaling Weak Scaling

To run a program faster To run a bigger program

Speed up achieved on a multiprocessor without

increasing the size of the problem

Speed up is achieved on a multiprocessor while

increasing the size of the problem

FLYNN`S CLASSIFICATION

15. Write Flynn's classification for parallel hardware. [Nov/Dec 2014]

Flynn's classification divides parallel hardware into four groups based on the number of

instruction streams and the number of data streams.

[1] Single Instruction stream Single Data stream (SISD)

[2] Single Instruction stream Multiple Data stream (SIMD)

[3] Multiple Instruction stream Single Data stream (MISD)

[4] Multiple Instruction stream Multiple Data stream (MIMD)

16. What is SISD?

Single Instruction stream Single Data stream is a uniprocessor in ml = md = 1. Conventional

machines with a single CPU capable only of scalar arithmetic fall into this category.

Unit – IV: Parallelism P a g e | 4.27

CS8491 – Computer Architecture

17. What is SIMD?

Single Instruction stream Multiple Data streams the same instruction is applied to many data

stream as in a vector processor. Here m1 = 1, mD> 1, it has single program control unit and many

independent execution units.

18. What are the advantages of SIMD?

 Cost of the control unit over dozens of execution unit.

 It has reduced instruction bandwidth and space.

 It needs only one copy of the code that is being executed simultaneously.

19. What are drawbacks of SIMD?

SIMD method is not suitable for case or switch condition data because depending on what data it

has execution unit must perform a different operation.

20. What is MISD?

Multiple Instruction stream Single Data stream processor is a stream processor that perform a

series of computations on a single data stream in a pipelined fashion. Here m1 > 1, mD = 1, fault

tolerant computers where several CPU's process the same data using different programs are

MISD.

21. What is MIMD?

Multiple Instruction stream Multiple Data stream is a multiprocessors, which are computers with

more than one CPU and the ability to execute several programs simultaneously.

HARDWARE MULTITHREADING

22. What is data level parallelism?

Data level parallelism is a kind of parallelism achieved by performing the sameoperation on

independent data.

23. What is basic principle of vector architecture?

Basic principle of vector architecture is to collect data elements from memory, put the data into a

large set of registers, operate on them sequentially in registers using pipelined execution units and then

write the results back to memory.

24. What is strip mining?

In vector architecture if the loops are larger then we add book keeping code to iterate full length

vector operations and to handle the leftovers. This process is called strip mining.

25. What is vector lane?

Vector lane is one or more vector functional units and a portion of the vector register file. Inspired

by lanes on highways that increase traffic speed and multiple lanes execute vector operations

simultaneously.

Unit – IV: Parallelism P a g e | 4.28

CS8491 – Computer Architecture

26. What is hardware multithreading? [Nov/Dec 2014]

Hardware multithreading allows multiple threads to share the functional units of a single

processor in an overlapping fashion to try to utilize the hardware resources efficiently.

27. What are the approaches involved in hardware multithreading process?

There are two main approaches to hardware multithreading such as

[1] Fine grained multithreading

[2] Coarse grained multithreading

28. What is meant by thread?

Thread is a lightweight process which includes the program counter, the register state and stack. It

shares a single address space.

29. Define process.

Process is a task on currently being execution. It includes one or more threads, the address space

and the operating system state. Process switch can invoke the operating system but thread switch

cannot do it.

30. What is fine grained multithreading?[May/June-2016][Nov/Dec-2017]

Fine grained multithreading is a version of hardware multithreading that implies switching

between threads after every instruction.

31. What is coarse grained multithreading?[Nov/Dec-2017]

Coarse grained multithreading is a version of hardware multithreading that implies switching

between thread only after significant events such as last level cache miss.

32. Write the advantages and disadvantages of fine grained multithreading.

ADVANTAGE

It can hide the throughput losses that arise from both short and long stalls because instruction

from other threads can be executed when one thread stalls.

DISADVANTAGE

It slows down the execution of the individual threads because thread that is ready to execute

without stalls will be delayed by instructions from other threads.

33. Write the advantages and disadvantages of coarse grained multithreading.

ADVANTAGE

It is more useful for reducing the penalty of high cost stalls.

DISADVANTAGE

It is limited in its ability to overcome throughput losses, especially from shorter stalls.

Unit – IV: Parallelism P a g e | 4.29

CS8491 – Computer Architecture

34. What is simultaneous multithreading?

Simultaneous multithreading is a variation on hardware multithreading that uses the resources of-

a multiple issue, dynamically scheduled micro architecture.

35. Distinguish implicit multithreading and explicit multithreading.

Implicit multithreading:

 Implicit multithreading is concurrent execution of multiple threads extracted from single

sequential program.

 Implicit threads defined statically by compiler or dynamically by hardware.

Explicit Multithreading:

 It is a computer science paradigm for building and programming parallel computers

around the parallel random access machine (PRAM) parallel computational model.

36. How many types in single address space multiprocessor?

Single address space multiprocessor comes in two styles such as

[1] Uniform Memory Access (UMA)

[2] Non Uniform Memory Access (NUMA)

37. Define uniform memory access (UMA).

Uniform Memory Access is a multiprocessor in which latency to any word in main memory is

same no matter which processor requests the access.

38. What is non uniform memory access (NUMA)?

Non Uniform Memory Access is a type of single address space multiprocessor in which some

memory accesses are much faster than others depending on which processor asks for which word.

39. What are the differences between UMA and NUMA? [May/June 2015]

S. No Uniform Memory Access -Non Uniform Memory Access

1
Programming challenges are

easy.

Programming challenges are hard.

2
UMA machines can scale small

sizes.
NUMA machines can scale to

larger sizes.

3.
It has higher latency. It has lower latency to nearby

memory.

MULTICORE PROCESSORS

40. Define synchronization.

Synchronization is the process of coordinating the behavior of two or more processes which may

be running on different processors.

Unit – IV: Parallelism P a g e | 4.30

CS8491 – Computer Architecture

41. What is meant by lock?

Lock is a synchronization device that allows access to data to only one processor at a time and

other processors interested in shared data must wait until the original processor unlocks the

variable.

42. What is multiple issue?

Multiple issue is scheme used to place multiple instructions in one clock cycle. It has two types

[1] Static multiple issue

[2] Dynamic multiple issue

43. What is static multiple issue?

Static multiple issue is an approach to implementing a multiple issue processor where many

decisions are made by the compiler before execution.

44. What is dynamic multiple issue?

Dynamic multiple issue is an approach to implementing a multiple issue processor where many

decisions are made during execution by the processor.

45. What is speculation?

Speculation is an approach in that compiler or process guesses the outcome of an instruction to

remove it as a dependence in executing other instructions.

46. What is issue packet?

Issue packet is set of instructions that issues together in one clock cycle and the packet may be

determine statically by the compiler or dynamically by the processor.

47. What is VLIW?

VLIW is Very Long Instruction Word, it is a style of instruction set architecture that launches

many operations.

All instructions are independent in a single wide instruction with many separateopcode fields.

48. What is loop unrolling?

Loop unrolling is an important compiler technique to get more performance from loops. In

unrolling multiple copies of the loop body are made.

49. What is register renaming?

Register renaming is the process of renaming of registers by the compiler or hardware to remove

anti-dependences.

50. What is superscalar processor?[nov/Dec-2015]

Superscalar processor is a dynamic multiple issue processor. It is an advanced technique that

enables the processor to execute more than one instruction per clock cycle by selecting them

during execution.

Unit – IV: Parallelism P a g e | 4.31

CS8491 – Computer Architecture

INTRODUCTION TO GRAPHICS PROCESSING UNITS

51. What is a thread of SIMD instructions?

A traditional thread which contains just SIMD instructions that are executed on a multithreaded SIMD

processor is called thread of SIMD instructions.

52. What is the function of SIMD block scheduler?

The Thread Block Scheduler that assigns blocks (blocks of vectorized loop)of threads to

multithreaded SIMD processors.

53. What is the function of SIMD thread scheduler?

SIMD thread scheduler schedules and issues threads of SIMD instructions when they are

ready to execute, includes a scoreboard to track SIMD thread execution.

CLUSTERS

54. What is clusters?

Clusters Collections of computers connected via I/O over standard network switches to form a

message-passing multiprocessor.

55. What is send message routine?

Send message routine: It is used by a processor in machines with private memories to pass a

message to another processors.

56. What is receive message routine?

Receive message routine: It is used by a processor in machines with private memories to

pass a message to another processors.

PART – B

INSTRUCTION LEVEL PARALLELISM

1. Explain in detail about Instruction Level Parallelism [Nov/Dec 2014 – 16M] [Page

No:4.1]

PARALLEL PROCESSING CHALLENGES

2. Explain the challenges in parallel processing method.[May/June-

2017][April/May-2018] [Page No:4.6]

Unit – IV: Parallelism P a g e | 4.32

CS8491 – Computer Architecture

FLYNN`S CLASSIFICATION

3. Explain the Flynn`s Classification for processors in detail with example.[Nov/Dec-

2015][May/june-2016][May/June-2017][Nov/Dec-2017] [Page No:4.8]

[OR]

Discuss about SISD, MIMD, SIMD, SPMD and Vector Systems [May/June 2015 –

16M] Page No:4.8]

HARDWARE MULTITHREADING

1. Explain in detail the concept of Hardware Multithreading and its types [Nov/Dec

2014 – 8M][nov/Dec-2015][May/June-2016][Nov/Dec-2016] [Page No:4.13]

[OR]

What is Hardware Multithreading? Compare and Contrast Fine Grained

Multithreading and Coarse Grained Multithreading [May/June 2015 – 16M] [Page

No:4.13]

2. Explain the four principal approaches to multithreading with necessary

diagrams.[May/June-2017] [Page No:4.13]

3. Describe simultaneous multithreading(SMT) with an example.[Nov/Dec-2017]

[Page No:4.14]

4. Compare and contrast fine grained multithreading, coarse grained multi

threading and simultaneous multithreading.[May/June-2018] [Page No:4.13]

MULTICORE PROCESSORS

5. Explain in detail about multicore processors and how they are different from

multiprocessors. [Nov/Dec 2014 – 8M][May/June-2016] [Page No:4.16]

6. Discuss shared memory multiprocessors with a neat diagram.[Nov/Dec-

2016][May/June-2018] [Page No:4.16]

GPU

7. Write a note on GPU architecture. [Page No:4.18]

8. Write a note on NVIDIA GPU memory structures. [Page No:4.20]

9. Write a note on message-passing multiprocessors. [Page No:4.22]

10. Write a note on clusters and warehouse scale computers.[Page No:4.23]

