
CS8391 DAT A STRUCTURES UNIT I

UNIT I LINEAR DATA STRUCTURES – LIST

Abstract Data Types (ADTs) – List ADT – array-based implementation – linked list

implementation – – singly linked lists- circularly linked lists- doubly-linked lists – applications

of lists –Polynomial Manipulation – All operation (Insertion, Deletion, Merge, Traversal).

 1.1 INTRODUCTION TO DATA STRUCTURES

Data structures

Data Structures is a means of storing a collection of data. It is the specification of the elements of

the structure, the relationship between them and the operations that may be performed upon

them.

 1.1.1 Types of Data Structures

Data structures can be classified based on the organization and the operations defined on it.

Fig: 1.1 Types of Data Structures

Linear and non-linear structure: Simple data structures can be combined in various ways to

form more complex structure. There are two kinds of complex data structure. They are linear &

non-linear, depending on the complexity of the logical relationship they represent

 Linear data structure: Stacks, queues, linear linked list, arrays

 Non- linear data structure: Tree and graph tables, sets.

Linear Data Structures

All the elements form a sequence or maintain a linear ordering. Data‟s are organized in a

sequential manner.

 1

CS8391 DAT A STRUCTURES UNIT I

Non Linear Data Structures

If all the elements are organized in a distributed manner then it was termed as Non-linear data

structures

 1.2 ABSTRACT DATA TYPE

 Abstract data type (ADT) is a specification of a set of data and the set of operations that

can be performed on the data.

 Objects such as lists, sets, and graphs, along with their operations, can be viewed as

abstract data types, just as integers, real, and Booleans are data types.

 Set of operations --- each operation does a specific task.

 ADT is a small function, a subprogram, which cannot be implemented as such, as it

contains only the essential things and lacks the rest.

 1.2.1 Operations on ADT:

1. Insertion at first, last and middle

2. Deletion at first, last and middle

3. Modifying the list,

4. Reversing the list,

5. Merging the list

Uses of ADT: -

1. It helps to efficiently develop well designed program

2. Facilitates the decomposition of the complex task of developing a software system into a

number of simpler subtasks

3. Helps to reduce the number of things the programmer has to keep in mind at any time

4. Breaking down a complex task into a number of earlier subtasks also simplifies testing

and debugging

 1.3 THE LIST ADT

 List is the collection of related data items.

 Eg: Name list (collection of names)

List of ADT’s:

1. Insertion at first,middle,last

2. Deletion at first,middle,last

3. Searching

4. Reversing

5. Traversing

 2

CS8391 DAT A STRUCTURES UNIT I

Implementation of LIST ADT:

1) Array Implementation

2) Linked List Implementation(using Pointers)

 1.4 ARRAY IMPLEMENTATION

Arrays

 It is the collection of related data items, stored in a continuous way.

 The very common linear structure is array. Since arrays are usually easy to traverse,

search and sort, they are frequently used to store relatively permanent collections of data.

 An array is a list of a finite number n of homogeneous data elements (i.e., data elements

of the same type) such that:

a) The elements of the array are referenced respectively by an index consisting of n

consecutive numbers.

b) The elements of the array are stored respectively in successive memory locations.

ARRAY ADTS:

1. Creation:

Void create(int a[20], int n)

{

int i;

for(i=0;i<n;i++)

scanf(“%d”,&a[i]);

}

Example: Let n=5

1020 1022 1024 1026 1028

2. Insertion at first:

Void ins_first(int a[],int x,int n)

{

int i;

for(i=n-1;i>=0;i--)

a[i+1]=a[i];

a[0]=x;

}

Let the no to be inserted be 2

 3

4

CS8391 DAT A STRUCTURES UNIT I

3. Insertion at middle:

Void ins_middle(int a[], int num,int n,int pos)

{

int i;

for(i=n-1;i>=pos;i--)

a[i+1]=a[i];

a[pos]=num;

}

Let the no to be inserted be 6 at pos 4

4. Insertion at LAST:

Void ins_end(int a[],int num,int n)

{

a[n]=x;

n=n+1;

}

5. Deletion at first:

Void del_first(int a[],int n)

{

int i; n=n-1;

for(i=0;i<n;i++)

a[i]=a[i+1];

}

Let the no to be inserted at last be 16

After deletion at the first the array looks like

6. Deletion at middle:

Void del_middle(int a[],int pos,int n)

{

int i; n=n-1;

for(i=pos;i<n;i++)

a[i]=a[i+1];

} After deletion at the middle at position 3

7. Deletion at end:

Void del_end(int a[],int n)

{

CS8391 DAT A STRUCTURES UNIT I

a[n-1]=0;

n=n-1;

}

8. Searching:

Void search(int a[],int x,int n)

{

int i,flag=0;

for(i=0;i<n;i++)

{

if(a[i]==x)

flag=1;

} if(flag==1)

printf(“Number found”);

else

printf(“Number not found”);

}

If X=3 then output is Number not found.

If X=1 then output is Number found

9. To check if the list is empty or not:

Void empty(int a[20],int pos)

{

if(pos== -1)

printf(“List is empty”);

else

printf(“List is filled”);

}

10. To check if the list is full:

Void list_full(int a[20],int pos,int n)

{

if(pos==(n-1))

printf(“List is full”);

else

printf(“List is not full”);

}

The index value of n=20 here.

BUT 5 index are filled in array a.

So the list is not empty bcoz it has 5 values

filled it it.

The index value of n=20 here.

ONLY 5 index are filled in array a.

So the list is not full bcoz it has only 5 values filled in it & has 15 empty spaces.

So the output is List is not full.

 5

CS8391 DAT A STRUCTURES UNIT I

 1.5 THE LINKED LIST IMPLEMENTATION OF LIST ADT

Linked List:

It is a collection of nodes, each node should have the respective data field and a

respective link fields (next address).

Fig: 1.2 Linked Lists Representation

Each node contains at least

 A piece of data (any type)

 Pointer to the next node in the list

 Head: pointer to the first node

 The last node points to NULL

Types of Linked List:

1. Singly Linked List

2. Doubly Linked List

3. Circular Singly Linked List

4. Circular Doubly Linked List

 1.6 SINGLY LINKED LIST

Singly Linked Lists are a type of data structure. It is a type of list. In a singly linked list

each node in the list stores the contents of the node and a pointer or reference to the next node in

the list. It does not store any pointer or reference to the previous node. It is called a singly linked

list because each node only has a single link to another node.

To store a single linked list, you only need to store a reference or pointer to the first node

in that list. The last node points to null to indicate that it is the last node.

Each cell is called a node of a singly-linked list. First node is called head and it's a dedicated

node.

By knowing it, we can access every other node in the list. last node, called tail, is also

stored in order to speed up add operation.

 6

CS8391 DAT A STRUCTURES UNIT I

Representation:

Fig: 1.3 Singly Linked Lists Representation

A singly linked list is one, which has only two fields for each node, i.e. a data field and a link

field.

Deletion from a linked list

Fig: 1.4 Singly Linked Lists Representation-Deletion

Insertion into a linked list

Fig: 1.5 Singly Linked Lists Representation-Insertion

Possible ADT’s:

 Creation.

 Insertion at First, Middle, Last.

 Deletion at First, Middle,Last.

 Searching.

 Isempty.

Basic Steps for creating a linked list:

1. Allocate the memory

2. Assign the data

3. Assign the proper link

 7

CS8391 DAT A STRUCTURES UNIT I

4. In order to allocate the memory for node, use the function malloc()

5. In order to free the memory, use the function free()

The structure definition of Singly Linked List

Struct node

{

int data;

struct node *next;

} *head;

The Possible ADTS Of Singly Linked List

1. Creation:

Void create(struct node *head,int num)

{

struct node *temp;

head= malloc(sizeof(struct node));

head --> data=num;

head --> next=null;

temp=head;

scanf(“%d”,&num);

do

{

Temp --> next=malloc(sizeof(struct node));

Temp= temp --> next;

Temp --> data=num;

scanf(“%d”,&num);

}while(num ! =0)

Temp --> next= null; Let the list created be

}

2. Insertion at first:

void ins_first(struct node *head,int num)

{

Struct node *temp;

temp= malloc(sizeof(struct node));

temp --> data= num;

temp --> next= head;

head= temp;

}

 8

CS8391 DAT A STRUCTURES UNIT I

Before Insertion:

Node to be inserted:

After Insertion:

3. Insertion at last:

Void ins_last(struct node *head, int num)

{

Struct node *temp, *t;

temp=head;

while(temp-->next != NULL)

{

temp= temp-->next;

}

t=malloc(sizeof(struct node));

t-->data=num;

t-->next=NULL;

temp-->next=t;

}

Before Insertion:

Node to be inserted:

After Insertion:

5. Insertion at middle:

Void ins_middle(struct node *head,int num, int num1)

{

Struct node *temp, *ptr;

 9

CS8391 DAT A STRUCTURES UNIT I

temp=malloc(sizeof(struct node));

temp-->data=num;

ptr=head;

while(ptr-->data != num1)

{

ptr=ptr-->next;

}

temp-->next=ptr-->next;

ptr-->next=temp;

}

Before Insertion:

Node to be inserted at Position 2:

After Insertion:

5. Is Empty:

Void isempty(struct node *head)

{

if(head == NULL)

Printf(“The List is empty”);

Else

Printf(“The List is not empty”);

}

6. No. of nodes in the list:

Int noofnodes(struct node *head)

{

int count=0;

struct node *temp;

temp=head;

while(temp-->next != NULL)

{ Output: 1

count ++;

 10

CS8391 DAT A STRUCTURES UNIT I

temp=temp-->next;

}

count=count+1;

return count;

}

7. Search:

Void search(struct node *head,int num)

{

Struct node *temp;

temp=head;

int flag=0;

while(temp != NULL)

{

If(temp-->data==num)

{

Printf(“Number found”); No to be searched : 6

Flag=1; Output: Number not found

break;

}

Else

temp=temp-->next;

}

If(flag==0)

{

Printf(“Number not found”);

}

8. Deletion at first:

Void del_first(struct node *head)

{

Struct node *ptr;

Ptr=head;

Head=head-->next;

Free(ptr);

}

Node to be deleted:

 11

CS8391 DAT A STRUCTURES UNIT I

Before deletion:

After deletion:

9. Deletion at last:

Void del_last(struct node *head)

{

Struct node *temp,*ptr;

Temp= head;

While(temp-->next != NULL)

{ Ptr=temp;

Temp=temp-->next;

}

Ptr-->next=NULL;

Free(temp);

}

Node to be deleted:

Before Deletion:

After Deletion

10. Deletion at middle:

Void del_middle(struct node *head,int num)

{

Struct node *temp,*p,temp=head;

While(temp-->data != num)

{

P=temp;

 12

CS8391 DAT A STRUCTURES UNIT I

Temp=temp-->next;

}

p-->next=temp-->next;

free(temp);

}

Node to be deleted:

Before Deletion:

After Deletion:

Advantages

1) Singly linked list can store data in non-contiguous locations. Thus there is no need of

compaction of memory, when some large related data is to be stored into the memory.

2) Insertion and deletion of values is easier as compared to array, as no shifting of values is

involved.

Disadvantages

1) Nodes can only be accessed sequentially. That means, we cannot jump to a particular node

directly.

2) Because of the above disadvantage, binary search algorithm cannot be implemented on the

singly linked list.

3) There is no way to go back from one node to previous one. Only forward traversal is possible.

 13

CS8391 DAT A STRUCTURES UNIT I

 1.7 DOUBLY LINKED LIST

A doubly-linked list is a linked data structure that consists of a set of data records, each

having two special link fields that contain references to the previous and to the next record in the

sequence. It can be viewed as two singly-linked lists formed from the same data items, in two

opposite orders.

A doubly-linked list whose nodes contain three fields: an integer value, the link to the

next node, and the link to the previous node.

The two links allow walking along the list in either direction with equal ease. Compared

to a singly-linked list, modifying a doubly-linked list usually requires changing more pointers,

but is simpler because there is no need to keep track of the address of the previous node.

In simpler terms, Doubly linked list

 Pointers exist between adjacent nodes in both directions.

 The list can be traversed either forward or backward.

 Usually two pointers are maintained to keep track of the list, head and tail.

Representation of a doubly linked list

Fig: 1.6 Doubly Linked Lists Representation

Example

Insertion of Node in a Double Linked List

Fig: 1.7 Doubly Linked Lists Representation-Insertion

 14

CS8391 DAT A STRUCTURES UNIT I

Deletion of Node in a Double Linked List

Fig: 1.8 Doubly Linked Lists Representation-Deletion

Structure Declaration :

Struct dnode

{

int data;

struct dnode *prev, *next;

} *head;

1. Creation:

Void create(struct dnode *head, int num)

{

Struct dnode *temp, *ptr;

Head=malloc(sizeof(struct dnode));

Head-->prev=NULL;

Head-->data=num;

Head-->next=NULL;

Temp=head;

Do

{

Temp-->next=malloc(sizeof(struct dnode));

Printf(“Enter a number”);

Scanf(“%d”,&num);

Ptr=temp;

Temp=temp-->next;

Temp-->data=num;

Temp-->prev=ptr;

} while(num != 0);

Temp -->next =NULL;

}

 15

CS8391 DAT A STRUCTURES UNIT I

2. Insertion at first:

Void ins_first(struct dnode *head, int num)

{

Struct dnode *temp;

Temp=malloc(sizeof(struct dnode));

Temp-->data=num;

Temp-->prev=NULL;

Head-->prev=temp;

Temp-->next=head;

Head=temp;

}

Before Insertion

Node to be Inserted

After Insertion

3. Insertion at last:

Void ins_last(struct dnode *head, int num)

{

Struct dnode *temp, *ptr;

Temp=head;

While(temp-->next != NULL)

{

Temp=temp-->next;

}

Ptr=malloc(sizeof(struct dnode));

Ptr-->data=num;

Ptr-->next=NULL;

Ptr-->prev=temp;

Temp-->next=ptr;

 16

CS8391 DAT A STRUCTURES UNIT I

}

Node to be inserted After Insertion

4. Insertion at middle:

Void ins_mid(struct dnode *head, int num, int num1)

{

Struct dnode *temp, *ptr, *t;

Temp=malloc(sizeof(struct dnode));

Temp-->data=num;

Ptr=head;

While(ptr-->data != num1)

{

Ptr=ptr-->next;

T=ptr-->next;

Ptr-->next=temp;

Temp-->prev=ptr;

Temp-->next=t;

t-->prev=temp;

}

5. Deletion at first:

Void del_first(struct dnode *head)

{

Struct dnode *temp;

Temp=head;

Head=head-->next;

Head-->prev=NULL;

Free(temp);

}

Node to be deleted

Before deletion

 17

CS8391 DAT A STRUCTURES UNIT I

After Deletion

6. Deletion at last :

Void del_last(struct dnode *head)

{

Struct dnode *temp, *ptr;

Temp=head;

While(temp-->next != NULL)

{ Ptr=temp;

Temp=temp-->next;

}

Ptr-->next=NULL;

Free(temp);

}

Before deletion

Node to be deleted

After Deletion

7. Deletion at middle:

Void del_mid(struct dnode *head, int num)

{

Struct dnode *temp;

Temp=head;

18

CS8391 DAT A STRUCTURES UNIT I

While(temp-->data != num)

{

Temp=temp-->next;

}

Temp-->prev-->next=temp-->next;

Temp-->next-->prev=temp-->prev;

Free(temp);

}

Before deletion

Node to be deleted

After Deletion

Applications.

1. Applications that have an MRU list (a linked list of file names)

2. The cache in your browser that allows you to hit the BACK button (a linked list of URLs)

3. Undo functionality in Photoshop or Word (a linked list of state)

4. A stack, hash table, and binary tree can be implemented using a doubly linked list.

5. A great way to represent a deck of cards in a game

Advantages

 The primary advantage of a doubly linked list is that given a node in the list, one can

navigate easily in either direction.

 This can be very useful, for example, if the list is storing strings, where the strings are

lines in a text file (e.g., a text editor).

 One might store the ``current line'' that the user is on with a pointer to the appropriate

node; if the user moves the cursor to the next or previous line, a single pointer operation

can restore the current line to its proper value.

 Or, if the user moves back 10 lines, for example, one can perform 10 pointer operations

(follow the chain) to get to the right line.

 For either of these operations, if the list is singly linked, one must start at the head of the

list and traverse until the proper point is reached. This can be very inefficient for large

lists.

 19

CS8391 DAT A STRUCTURES UNIT I

Disadvantages

 each node requires an extra pointer, requiring more space

 The insertion or deletion of a node takes a bit longer (more pointer operations).

 1.8 CIRCULAR SINGLY LINKED LIST

Singly Linked List has a major drawback. From a specified node, it is not possible to

reach any of the preceding nodes in the list. To overcome the drawback, a small change is made

to the SLL so that the next field of the last node is pointing to the first node rather than NULL.

Such a linked list is called a circular linked list.

 Because it is a circular linked list, it is possible to reach any node in the list from a

particular node.

 There is no natural first node or last node because by virtue of the list is circular.

 Therefore, one convention is to let the external pointer of the circular linked list, tail,

point to the last node and to allow the following node to be the first node.

 If the tail pointer refers to NULL, means the circular linked list is empty.

Fig: 1.9 Circular Singly Linked Lists Representation

Structure Declaration:

Struct node

{

int data;

struct node *next;

} *head;

1. Creation of a circular singly linked list :

Void create(struct node *head, int num)

{

Struct node *temp;

head-->data=num;

head-->next=NULL;

printf(“Enter next data”);

scanf(“%d”,&num);

 20

CS8391 DAT A STRUCTURES UNIT I

temp=head;

while(num != 0)

{

temp-->next=malloc(sizeof(struct node));

temp=temp-->next;

temp-->data=num;

scanf(“%d”,num);

}

temp-->next=head;

}

2. Insertion:

Void insert(struct node *head, int num, int n)

{

Struct node *temp, *ptr;

temp=malloc(sizeof(struct node));

temp-->data=num;

ptr=head;

while(ptr-->data != n)

{

Ptr=ptr-->next;

}

temp-->next=ptr-->next;

ptr-->next=temp;

}

3. Insert before head:

Void ins(struct node *head, int num)

{

Struct node *temp, *ptr;

temp=malloc(sizeof(struct node));

temp-->data=num;

ptr=head;

while(ptr-->next != head)

{

ptr=ptr-->next;

}

ptr-->next=temp;

temp-->next=head;

}

 21

CS8391 DAT A STRUCTURES UNIT I

Before Insertion

After Insertion

4. Deletion:

Void del(struct node *head, int num)

{

Struct node *temp, *ptr;

temp=head;

while(temp-->data != num)

{ ptr=temp;

temp=temp-->next;

}

ptr-->next=temp-->next;

free(temp);

}

Before Deletion at First

After Deletion at First

 22

CS8391 DAT A STRUCTURES UNIT I

 1.9 CIRCULAR DOUBLY LINKED LIST

A Circular Doubly Linked List (CDL) is a doubly linked list with first node linked to

last node and vice-versa.

 The „ prev ‟ link of first node contains the address of last node and „ next ‟ link of last

node contains the address of first node.

 Traversal through Circular Singly Linked List is possible only in one direction.

 The main advantage of Circular Doubly Linked List (CDL) is that, a node can be

inserted into list without searching the complete list for finding the address of

previous node.

 We can also traverse through CDL in both directions, from first node to last node and

vice-versa.

Fig: 1.10 Circular Doubly Linked Lists Representation

Structure Declaration:

Struct dnode

{

int data;

struct dnode *next;

struct dnode *prev;

} *head;

1. Creation of a circular doubly linked list :

Void create(struct dnode *head, int n)

{

int n;

struct dnode *temp, *t;

printf(“Enter number for the list”);

scanf(“%d”,&num);

temp=malloc(sizeof(struct dnode));

temp-->data=num;

temp-->next=NULL;

 23

CS8391 DAT A STRUCTURES UNIT I

temp-->prev=NULL;

head=temp;

while((n-1) != 0)

{

Printf(“Enter the number”);

Scanf(“%d”,&num);

t=temp;

temp-->next=malloc(sizeof(struct dnode));

temp=temp-->next;

temp-->data=num;

temp-->prev=t;

}

temp-->next=head;

head-->prev=temp;

}

2. Insertion :

Void ins(struct dnode *head, int num)

{

Struct dnode *temp,*new;

temp=head;

while(temp-->next != head)

{

temp=temp-->next;

}

new=malloc(sizeof(struct dnode));

new-->data=num;

temp-->next=new;

new-->prev=temp;

head-->prev=new;

}

3. Deletion :

Void del(struct dnode *head, int num)

{

Struct dnode *temp;

temp=head;

After Insertion At First

 24

CS8391 DAT A STRUCTURES UNIT I

while(temp-->data != num)

{

temp=temp-->next;

}

temp-->prev-->next=temp-->next;

temp-->next-->prev=temp-->prev;

free(temp);

}

Before Deletion At First

After Deletion At First

 1.10 APPLICATIONS OF LISTS:

The Linked list is a data structure which makes use of dynamic memory. Hence it is

possible to handle the list of any desired length using the linked list.

Various application of linked list are:

 The linked list is used for performing polynomial operations such as

addition,multiplication evaluation and so on.

The linked list is used for handling the Set Operations.

The stack data structure can be implemented using linked List

The Queue data structurs can be implemented using linked List

1.11 POLYNOMIAL MANIPULATION

(INSERTION, DELETION,MERGE,TRAVERSAL)

 It is an application of linked list. A polynomial is a sum of terms where each term has a

variable, coefficient and exponents.

 One can also perform various operations such as addition, multiplication, subtraction,

division on these polynomials.

 25

CS8391 DAT A STRUCTURES UNIT I

Representation of array polynomials:

 The index of an array will act as the exponent and the coefficient can be stored at the

particular index and the constant value should be placed at the zeroth position.

Typedef struct

{

Int coeffarray[max];

Int highpower;

} *polynomial;

Void addpolynomial(const polynomial poly1, const polynomial poly2,polynomial polysum)

{

int i;

zeropolynomial(polysum);

polynum-->highpower=max(poly1-->highpower, poly2-->highpower);

for(i=polysum-->highpower; i>=0; i--)

polysum-->coeffarray[i]=poly1-->coeffarray[i]+poly2-->coeffarray[i];

}

Void zeropolynomial(polynomial poly)

{

int i;

for(i=0; i<=maxdegree; i++)

poly-->coeffarray[i]=0;

poly-->highpower=0;

}

Representation of polynomial using linked list :

Fig: 1.11 Representation of polynomial

 26

CS8391 DAT A STRUCTURES UNIT I

Struct node

{

int coefficient; int

exponent; struct

node *next;

} *head;

Void polyadd(struct node *head1, struct node *head2, struct node *head3)

{

int x;

head3=malloc(sizeof(struct node));

if(head1==head2==NULL)

printf(“List is NULL”);

else

x=max(head1-->exponent, head2-->exponent);

while(x>=0)

{

If(head1-->exponent==head2-->exponent)

{

head3-->coefficient=head1-->coefficient + head2-->coefficient;

head3-->exponent=head1-->exponent;

head3-->next=malloc(sizeof(struct node));

head1=head1-->next;

head2=head2-->next;

}

Else if(head1-->exponent > head2-->exponent)

{

head3-->coefficient=head1-->coefficient;

head3-->exponent=head1-->exponent;

head3-->next=malloc(sizeof(struct node));

}

Else if(head1-->exponent < head2-->exponent)

{

Head3-->coefficient=head2-->coefficient;

Head3-->exponent=head2-->exponent;

Head3-->next=malloc(sizeof(struct node));

}

Head3=head3-->next;

x--;

}

 27

CS8391 DAT A STRUCTURES UNIT I

Struct polynode

{

int coeff;

int exp;

struct polynode *link;

} *x,*y,*z,*s;

Void polyadd(struct polynode *x, struct polynode *y, struct polynode *s)

{

Struct polynode *z;

If(x==NULL && y=NULL)

return;

while(x!=NULL && y!=NULL)

{

If(s==NULL)

{

s=malloc(sizeof(struct polynode));

z=s;

}

Else

{

z-->link=malloc(sizeof(struct polynode));

z=z-->link;

}

If(x-->exp < y-->exp)

{

z-->coeff = y-->coeff;

z-->exp=y-->exp;

y=y-->link;

}

Else

{

If(x-->exp > y-->exp)

{

z-->coeff=x-->coeff;

z-->exp=x-->exp;

x=x-->link;

}

Else

{

 28

CS8391 DAT A STRUCTURES UNIT I

If(x-->exp==y-->exp)

{

z-->coeff=x-->coeff + y-->coeff;

z-->exp=x-->exp;

x=x-->link;

y=x-->link;

}

}

}

while(x!=NULL)

{

If(s==NULL)

{

s=malloc(sizeof(struct polynode));

z=s;

}

Else

{

z-->link=malloc(sizeof(struct polynode));

z=z-->link;

}

z-->coeff=x-->coeff;

z-->exp=x-->exp;

x=x-->link;

}

z-->link=NULL;

} // End of routine

PART-A

ABSTRACT DATA TYPES (ADTS) – LIST ADT

1. Define data structure. [L1]

2. Classify data structure [L1]

3. What are Abstract Data Types? [Nov/Dec-2014, May/June-2015] [L1]

4. List the ADT operations. [L1]

5. What is the advantage of an ADT?[May/June-2015] [L1]

6. Write the ADT for Set. [L2]

7. What is static and dynamic memory management? [L1]

8. Should arrays or linked lists be used for the following types of applications: -

 Justify your answer.

 29

CS8391 DAT A STRUCTURES UNIT I

a. Many search operations in sorted list

b. Many search operation in unsorted list. [May/June-2015] [L3]

9. What are the differences between linear and non-linear data structure. [L1]

ARRAY-BASED IMPLEMENTATION – LINKED LIST IMPLEMENTATION

10. Define list. How it is implemented? [L1]

11. What is linked list? Give its types. [L1]

12. What is the need for the header? [L1]

13. Define singly linear linked list. [L1]

14. List the operations of linked list. [L1]

15. What are the advantages of linked list implementation of list? List the limitation in array

based implementation of list ADT. [L3]

16. Compare linked list over arrays.[Nov/Dec 2018] [L2]

17. What is the advantage of linked list over arrays? [L2]

CIRCULARLY LINKED LISTS- DOUBLY-LINKED LISTS

18. Define singly circular linked list. [L1]

19. What is circular linked list?[Nov/Dec-2014] [L1]

20. Define doubly linear linked list. [L1]

21. Define doubly circular linked list. [L1]

APPLICATIONS OF LISTS – POLYNOMIAL MANIPULATION

22. What are the applications of linked list? [May/June-2015] [L1]

23. Define polynomial. How it is represented using linked list? [L2]

PART B

ABSTRACT DATA TYPES – LIST ADT – ARRAY-BASED IMPLEMENTATION

1. Write about abstract data type.[Pg.No:2] [L1]

2. Explain the array implementation of list ADT with routine and example. [N/D 2018] [L4]

(or)

Consider an array A [1, 2….n]. Given a position, write an algorithm to insert an element in

the array. If the position is empty, the element is inserted easily. If the position is already

occupied, the element should be inserted with minimum number of shifts. (Note: The

elements can be shifted to left or right to make minimum number of moves). [May/June

2014]

 30

CS8391 DAT A STRUCTURES UNIT I

 31

LINKED LIST IMPLEMENTATION – SINGLY LINKED LISTS

3. Explain the linked list implementation of list ADT with routine and example. (or)

Explain in detail about single linked list with routine and example. [Pg.No:6] [L1]

DOUBLY-LINKED LISTS

4. Define doubly linked list. Write the routine for its operations. (or) [L1]

Write an algorithm to perform insertion and deletion on a doubly linked list. Give the

relevant coding in C. (or) [May/June 2014]

Describe the creation of double linked list and appending the list. Give the relevant coding in

C. [Pg.No:13] [Nov/Dec 2014]

CIRCULARLY LINKED LISTS

5. Define circular linked list. Write the routine for its operations. [May/June 2015] [L1]

6. Define circular double linked list. Write the routine for its operations. [N/D 2018] [L1]

APPLICATIONS OF LISTS –

7. Explain Polynomial manipulation (or) [L1]

Write about the applications of list [N/D 2018]

PART -A

ABSTRACT DATA TYPES (ADTS) – LIST ADT

1. Define data structure.

The data structure can be defined as the collection of elements and all the possible

operations which are required for those set of elements.

A data structure is a set of domains D, a set of Function F and set of axioms A. This triple

(D, F, A) denotes the data structure d.

Or

The way of storing and organizing data in memory is known as data structure. They

provide an orderly way to store and retrieve the elements in an efficient way.

2. Classify data structure

 Simple data structure or Primitive data structure

o Example: int, char, float

 Compound data structure or Non primitive data structure

CS8391 DAT A STRUCTURES UNIT I

 32

o Linear data structure

 Example: list, stack, queue

o Non-Linear structure

 Example: Trees, Graphs

3. What are Abstract Data Types?

The abstract data type is a triple of D-set of Domains, F- set of Functions, A- Axioms in

which only what is to be done is mentioned but how is to be done is not mentioned. In short,

all the implementation details are hidden.

ADT = Type + Function name + Behavior of each function.

4. List the ADT operations.

b. Create - This operation creates the database.

c. Display - This operation is for displaying all the elements of the data structure.

d. Insertion - By this operation the element can be inserted at any desired position.

e. Deletion - By this operation any desired element can be deleted from the data structure.

f. Modification - this operation modifies the desired element‟s value by any other desired

new value.

5. What is the advantage of an ADT?

 It can be reused in future programs.

 It reduces coding efforts.

 It ensured a robust data structure.

 Debugging is easier.

 Implementing of ADTs can be changed without requiring changes to the program that

uses the ADTs.

6. Write the ADT for Set.

AbstractDataType SET

Instance: Set is a collection of integer type of elements.

Preconditions: None.

Operations:

1. Store (): This operation is for storing the integer element in a set.

2. Retrieve (): This operation is for retrieving the desired element from the given set.

3. Display (): This operation is for displaying the contents of set.

CS8391 DAT A STRUCTURES UNIT I

 33

7. What is static and dynamic memory management?

The static memory management means allocating or de-allocating of memory at

compilation time. The dynamic memory management means allocating or de-allocating of

memory at running time (after compilation).

8. Should arrays or linked lists be used for the following types of applications: - Justify

your answer?

a. Many search operations in sorted list

b. Many search operation in unsorted list.

Many search operations in sorted list

In this case, using arrays will save time because there will be fewer comparisons. Since

the list is sorted the key value can be compared with the middle element of the array and if

the key < array element, then left part of array should be searched; if key > array, right part

of array should be searched. Best way is to implement a binary search algorithm.

Many search operation in unsorted list.

In this case array should be used because the elements of an array will be stored in

consecutive memory locations whereas in the linked list the elements can be stored in any

location and each node has to hold the address of the next element.

9. What are the differences between linear and non-linear data structure.

S.No Linear Data Structure Non-Linear Data Structure

1

It is collection of nodes which are

logically adjacent in which logical

adjacency is maintained by pointers.

Non-linear data structure can be constructed

as a collection of randomly distributed set of

data items joined together by using a special

pointer.

2

They are constructed as a continuous

arrangement of data element in the

memory. The relationship of adjacency

is maintained between the data

elements.

In non-linear data structure the relationship

of adjacency is not maintained between the

data items.

3 Example: List, stack queue Example: Tree, graph

ARRAY-BASED IMPLEMENTATION – LINKED LIST IMPLEMENTATION

10. Define list. How it is implemented?

 List is a collection of elements in sequential order.

CS8391 DAT A STRUCTURES UNIT I

 34

 In memory we can store the list in two ways; one way is we can store the elements in

sequential memory locations. This is known as arrays and the other way is we can use

pointer or links to associate the elements sequentially.

Implementation ways

 Array based implementation

 Linked list based implementation

11. What is linked list? Give its types.

A linked list is a set of nodes where each node has two fields „data and a „link. Where

„data filed stores the actual piece of information and „link field is used to point to next node.

Basically link filed is nothing but the address node.

Linked list is a kind of series of data structures, which are not necessarily adjacent in

memory. Each structure contains the element and a pointer to a record containing its

successor.

Structure : Data Link

1. Singly linked list

2. Doubly linked list

3. Singly circularly linked list

4. Doubly circularly linked list

Types:

12. What is the need for the header?

Header of the linked list is the first element in the list and it stores the number of elements in

the list. It points to the first data element of the list.

13. Define singly linear linked list.

This list consists of only one link, to point to next node or element. This is also called

linear list because the last element points to nothing it is linear in nature. The last field of last

node is NULL which means that there is no further list. The very first node is called head or

first.

14. List the operations of linked list.

 Creation

 Display

 Insertion

CS8391 DAT A STRUCTURES UNIT I

 35

 Deletion

 Searching

15. What are the advantages of linked list implementation of list? List the limitation in

array based implementation of list ADT.

 Linked list facilities dynamic memory management by allowing elements to be added or

deleted at any time during program execution.

 It ensures the efficient utilization of memory space as only that much amount of memory

space is reserved as is required for storing the list of elements.

 It is easy to insert or delete elements in a linked list, unlike arrays, which require

shuffling of other elements with each insert and delete operation.

Limitation of array implementation

 Insertion and deletion operation are expensive as it requires more data movement.

 Find and print list operation takes constant time.

 Even if the array is dynamically allocated, an estimate of the maximum size of the list is

required which considerably wastes the memory space.

16. Compare linked list over arrays.

S.No Linked list Arrays

1.

Te linked list is a collection of nodes

and each node is having one data filed

and next link field.

The array is a collection of similar types of

data elements. In array the data is always

stored at some index of the array.

2.
Any element can be accessed by

sequential access only.

Any element can be accessed randomly i.e.

with the help of index of the array.

3. Physically the data can be deleted. Only logical deletion of the data is possible.

4. Insertions and deletion of data is easy. Insertions and deletion of data is difficult.

5.

Memory allocation is dynamic. Hence

developer can allocate as well as de-

allocate the memory and so no

wastage of memory is there.

The memory allocation is static. Hence once

the fixed amount of sixe is declared then

that much memory is allocated. Therefore

there is a chance of either memory wastage

or memory shortage,

17. What is the advantage of linked list over arrays?

 The linked list makes use of the dynamic memory allocation. Hence the user can allocate

or de-allocate the memory as per his requirements.

CS8391 DAT A STRUCTURES UNIT I

 36

 On the other hand, the array makes use of the static memory location. Hence there are

chances of wastage of the memory or shortage of memory.

CIRCULARLY LINKED LISTS- DOUBLY-LINKED LISTS

18. Define singly circular linked list.

In the singly circular linked list only one link is used to point to next element. The last

node‟s link filed points to the first or head node.

19. What is circular linked list?

The circular linked list (CLL) is similar to singly linked list except that the last node‟s

next pointer points to first node. The list will be accessed like a chain. Circular linked list can

be used to help the traverse the same list again and again if needed.

20. Define doubly linear linked list.

In this linked list each node has two pointers previous and next pointers. The previous

pointer points to previous node and next pointer points to next node. Only in case of head

node the previous pointer is obviously NULL and last node‟s next pointers points to NULL.

This list is a linear one.

21. Define doubly circular linked list.

In circular doubly linked list the previous pointer of first node and the next pointer of last

nodes are pointed to head node. Head node is a special node which may have any dummy

data or it may have some useful information. Such as total number of nodes in the list which

may be used to simplify the algorithms carrying various operations on the list.

CS8391 DAT A STRUCTURES UNIT I

APPLICATIONS OF LISTS – POLYNOMIAL MANIPULATION

22. What are the applications of linked list?

 It is used for performing polynomial operations such as addition, multiplication

evaluation and so on.

 It is used for handling the set operations.

 The stack data structure can be implemented using linked list.

 The queue data structure can be implemented using linked list.

23. Define polynomial. How it is represented using linked list?

A polynomial is homogeneous ordered list of pairs <exponent, coefficient>, where each

coefficient is unique.

Example:

3x2+5x+7

Linked list representation

The main fields of polynomial are coefficient and exponent, in linked list it will have one

more filed called „link‟ field to point to next term in the polynomial. If there are „n‟ terms in

the polynomial then „'n‟ such nodes have to be created.

The polynomial equation can be represented with linked list as follows:

Coefficient Exponent Next node link

struct polynomial

{

int coefficient;

int exponent;

struct polynomial *next;

}

 37

