

CS8391 DAT A STRUCTURES UNIT II

UNIT II LINEAR DATA STRUCTURES – STACKS, QUEUES

Stack ADT – Operations - Applications - Evaluating arithmetic expressions- Conversion of Infix

to postfix expression - Queue ADT – Operations - Circular Queue – Priority Queue - deQueue –

applications of queues.

 2.1 CONCEPT OF STACK- STACK ADT

Stack is a linear data structure. Stack is an ordered collection of elements in which

insertions and deletions are restricted to only one end. The end from which the elements are

added and are removed is referred to as “TOP”. The stack is also called as piles or push down

list. The Mechanism which is followed in stack is Last In First Out (LIFO).

Fig: 2.1 Concept of Stack

Stack can be implemented by

 An Array

 Linked list.

Operations of Stack

 Push() : Insertion

 Pop() : Deletion

Possible ADT’s of Stack using array:

1. Push

2. Pop

3. Is Empty

4. Is Full

5. Display top/peek()

6. Display all

7. Search

 38

CS8391 DAT A STRUCTURES UNIT II

Fig: 2.2 Stack Operations

 2.1.1 STACK OPERATIONS

1. Creation :

Void create(int stack[], int top, int n)

{

for(top=0;top<n; top++)

scanf(“%d”, &stack[top]);

--top;

}

2. Push :

Void push(int stack[], int top, int num)

{

if(top== -1)

stack[++top]= num;

 39

CS8391 DAT A STRUCTURES UNIT II

else if(top== size – 1)

printf(“Top= %d , Stack is full”,top);

else

stack[++top]=num;

}

3. Display Top :

Void displaytop(int stack[], int top)

{

if(top== -1)

printf(“ Stack is Empty”);

else

printf(“Top element is %d “, Stack[top]);

} The top element is 1

4. Pop :

Void pop(int stack[], int top)

{

int x;

if(top== -1)

return 1;

else

{

x=stack[top];

--top;

} return x;

}

5. Display :

Void display(int stack[], int top)

{

int i;

for(i=top; i>=0; i--)

printf(“%d”, stack[i]);

}

6. Is Empty :

int isempty(int stack[],int top)

{

if(top== -1)

return 1; // Stack is empty

 40

CS8391 DAT A STRUCTURES UNIT II

else

return 0; // Stack is not empty

}

7. Is Full :

int isfull(int stack[], int top)

{

if(top== size – 1)

return 1; //Full Stack

else

return 0; //Stack is not full.

}

Underflow – If Stack is empty and if we try to pop stack underflow occurs.

Overflow --- If Stack is full and if we try to push stack overflow occurs.

 2.1.2 IMPLEMENTATION OF STACK USING LINKED LIST

Stack Using Linked List

Struct stack

{

Int data;

Struct node *next;

} *top=NULL;

1. Creation :

Void create(struct stack *top, int x)

{

Struct stack *new;

top=malloc(sizeof(struct stack));

top-->data=x;

top-->next=NULL;

top=new;

scanf(“%d”,&x);

do

{

new=malloc(sizeof(struct stack));

new-->data=x;

new-->next=top;

Fig: 2.3 Stack Using Linked List

 41

CS8391 DAT A STRUCTURES UNIT II

top=new;

scanf(“%d”, &x);

} while(x!=0);

}

2. Push() :

Void push(struct stack *top, int num)

{

Struct stack *new;

If(top==NULL) {

Printf(“Stack is initially empty”);

top=malloc(sizeof(struct stack));

top-->data=num;

top-->next=NULL;

}

Else

{

new=malloc(sizeof(struct stack));

new-->data=num;

new-->next=top;

top=new;

}

}

3. Displaytop() / peek() :

Void peek(struct stack *top)

{

printf(“%d”,top-->data);

}

4. Displayall() :

Void displayall(struct stack *top)

{

Struct stack *temp;

temp=top;

while(temp != NULL)

{

Printf(“%d”,temp-->data);

temp=temp-->next;

}

}

 42

CS8391 DAT A STRUCTURES UNIT II

5. Pop() :

Void pop(struct stack *top)

{

Struct stack *temp;

temp=top;

top=top-->next;

free(temp);

}

Advantages of stack:

 very simple data type.

 very fast.

 space efficient.

 direct access to last (first)element added.

Disadvantages of stack:

 set of operations is very restricted(no access to elements other than last(first), no

searching, no iterating)

 2.1.3 APPLICATION OF STACK

1. Expression evaluation

2. Backtracking (game playing, finding paths, exhaustive searching)

3. Memory management, run-time environment for nested language feature

 2.2 THE EVALUATION OF ARITHMETIC EXPRESSION

There are three forms to evaluate arithmetic expressions:

1. Infix Operand Operator Operand.

2. Postfix Operand Operand Operator.

3. Prefix Operator Operand Operand.

Priority Table

Table: 2.1- Priority Table

 43

CS8391 DAT A STRUCTURES UNIT II

EVALUATION OF POSTFIX:

1. The first element you pop off of the stack in an operation should be evaluated on the right

hand side of the operator.

2. For multiplication and addition order does not matter. But for subtraction and division,

your answer will be incorrect if you change your operands alone.

3. If the character is an operand, push it on to the stack. If the character is an operator, pop

first two values from the stack and apply the operator to them and push the result on to

the stack again.

For instance, the postfix expression

6 5 2 3 + 8 * + 3 + *

is evaluated as follows: The first four symbols are placed on the stack. The resulting stack is

 Next a '+' is read, so 3 and 2 are popped from the stack and their sum, 5, is pushed.

 Next 8 is pushed.

 Now a '*' is seen, so 8 and 5 are popped as 8 * 5 = 40 is pushed.

 Next a '+' is seen, so 40 and 5 are popped and 40 + 5 = 45 is pushed.

 Now, 3 is pushed.

 Next '+' pops 3 and 45 and pushes 45 + 3 = 48.

Finally, a '*' is seen and 48 and 6 are popped, the result 6 * 48 = 288 is pushed.

BALANCING SYMBOLS

Compilers check your programs for syntax errors, but frequently a lack of one symbol

(such as a missing brace or comment starter) will cause the compiler to spill out a hundred lines

of diagnostics without identifying the real error.

A useful tool in this situation is a program that checks whether everything is balanced.

Thus, every right brace, bracket, and parenthesis must correspond to their left counterparts. The

sequence [()] is legal, but [(]) is wrong.

The simple algorithm uses a stack and is as follows:

1. Make an empty Stack.

2. Read the character until end of file.

3. If the character is an opening symbol, push it on to the Stack.

4. If the character is a closing symbol, then if the stack is empty , report an error, otherwise

pop the stack.

5. If the Symbol popped is not the corresponding opening symbol, then report an error.

6. At the end of file, if the stack is not empty, report an error.

 44

CS8391 DAT A STRUCTURES UNIT II

Fig: 2.4 Balancing Symbols

It is clearly linear and actually makes only one pass through the input. It is thus on-line and quite

fast. Extra work can be done to attempt to decide what to do when an error is reported--such as

identifying the likely cause.

 2.3 CONVERSION INFIX TO POSTFIX

Algorithm for Infix to Postfix :

Rule 1: Read the infix expression, one character at a time,until it encounters the demitor.

Rule 2: If the character is an operand, place it onto the output. If the character is an operator,

then follow the conditions given below.

 If the stack operator has the highest or equal priority than the input operator, then pop

that operator from the stack, and place it onto the operator into the stack.

 If the stack operator has the lowest Priority than the input operator, then simply push the

input operator into the stack.

Rule 3: If the character is a left parenthesis, push it on to the stack. If the character is a right

parenthesis, pop all the operators from the stack, till it encounters left parenthesis and discard

both the parenthesis for the output.

1. Evaluate the expression

a*b+(c – d / e)

 45

CS8391 DAT A STRUCTURES UNIT II

2. convert the infix expression

a + b * c + (d * e + f) * g

First, the symbol a is read, so it is passed through to the output. Then '+' is read and pushed onto

the stack. Next b is read and passed through to the output. The state of affairs at this juncture is

as follows:

Next a '*' is read. The top entry on the operator stack has lower precedence than '*', so nothing is

output and '*' is put on the stack. Next, c is read and output. Thus far, we have

The next symbol is a '+'. Checking the stack, we find that we will pop a '*' and place it on the

output, pop the other '+', which is not of lower but equal priority, on the stack, and then push the

'+'

The next symbol read is an '(', which, being of highest precedence, is placed on the stack. Then d

is read and output.

We continue by reading a '*'. Since open parentheses do not get removed except when a closed

parenthesis is being processed, there is no output. Next, e is read and output.

 46

CS8391 DAT A STRUCTURES UNIT II

The next symbol read is a '+'. We pop and output '*' and then push '+'. Then we read and output

Now we read a ')', so the stack is emptied back to the '('. We output a '+'.

We read a '*' next; it is pushed onto the stack. Then g is read and output.

The input is now empty, so we pop and output symbols from the stack until it is empty.

#include<stdio.h>

#include<alloc.h>

char inf[40],post[40];

int top=0,st[20];

void postfix();

void push(int);

char pop();

void main()

{

printf("\n\nEnter the infix expression:");

scanf("%s",inf);

postfix();

}

void postfix()

{

int i,j=0;

for(i=0;inf[i]!='\0';i++)

{

switch(inf[i])

{

case '+': while(st[top]>=1)

post[j++]=pop();

push(1);

break;

case '-': while(st[top]>=1)

 47

CS8391 DAT A STRUCTURES UNIT II

post[j++]=pop();

push(2);

break;

case '*':while(st[top]>=3)

post[j++]=pop();

push(3);

break;

case '/': while(st[top]>=3)

post[j++]=pop();

push(4);

break;

case '^': while(st[top]>=4)

post[j++]=pop();

push(5);

break;

case '(': push(0);

break;

case ')': while(st[top]!=0)

post[j++]=pop();

top--;

break;

default:post[j++]=inf[i];

}

} while(top>0)

post[j++]=pop();

printf("\nThe postfix expression is

%s",post);

}

void push(int ele)

{ top++;

st[top]=ele;

}

char pop()

{

int e1; char

e;

e1=st[top];

top--;

switch(e1)

{

case 1:e='+';

break;

case 2:e='-';

break;

case 3:e='*';

break;

case 4:e='/';

break;

case 5:e='^';

break;

}

return (e);

}

 2.4 CONCEPT OF QUEUE – QUEUE ADT

The queue is one of the more simple abstract data types, closely related to the stack. In

many ways the queues is a “backward stack”; where a stack is a first in last out data storage

medium, a queue is a first in first out structure.

Queue is an ordered collection of elements in which insertion is done at the rear end, and

deletion is done at the front end. Technical name for insertion is Enqueue() and technical name

for deletion is Dequeue().

 48

CS8391 DAT A STRUCTURES UNIT II

Fig: 2.5 Concept of Queue

Types Of Queue:

 Linear queues

 Circular queues

 Priority queue

 Deque

LINEAR QUEUE

Linear Queue can be implemented using

 array

 linked list.

Queue using array

For each queue data structure, we keep an array, QUEUE[], and the positions q_front and

q_rear, which represent the ends of the queue. We also keep track of the number of elements that

are actually in the queue, q_size.

To enqueue an element x, we increment q_size and q_rear, then set QUEUE[q_rear] = x.

To dequeue an element, we set the return value to QUEUE[q_front], decrement q_size, and then

increment q_front.

 2.4.1 QUEUE OPERATIONS

The possible ADT’s are,

1) Is Empty

2) Is Full

3) Display rear

4) Display Front

5) Enqueue

6) Dequeue

7) Count

 49

CS8391 DAT A STRUCTURES UNIT II

Representation of Queue using array:

Fig: 2.6 Representation of Queue

Example:

1.Is Empty :

Void isempty(int queue[] ,int front, int rear)

{

if((front== -1) && (rear== -1))

printf(“Queue is empty”);

else

printf(“Queue is not empty”);

}

2. Is Full :

Void isfull(int queue[], int rear)

{

If(rear == size-1)

Printf(“Queue is full”);

Else

Printf(“Queue is not full”);

}

3. Creation :

Void create(int queue[],int front, int rear,int n)

{

 50

CS8391 DAT A STRUCTURES UNIT II

int i; for(i=0;i<n;i++)

scanf(“%d”, &queue[i]);

front=0;

rear=n-1;

}

4. Display Rear :

Void displayrear(int queue[],int rear)

{

Printf(“%d”,queue[rear]);

}

5. Display Front :

Void dispfront(int queue[],int front)

{

Printf(“%d”, &queue[front]);

}

6. Insertion :

Void enqueue(int queue[],int rear,int num)

{

if(rear==size-1)

printf(“Overflow”);

else

queue[++rear]=num;

}

7. Deletion | Dequeue :

Void dequeue(int queue[],int front)

{

if(front== -1)

printf(“Underflow”);

else

{

printf(“%d”,queue[front]);

++front;

}

}

 51

CS8391 DAT A STRUCTURES UNIT II

8. Display :

Void display(int queue[],int front, int rear)

{

int i;

for(i=front;i<=rear;i++)

printf(“%d”,queue[i]);

}

 2.4.2 LINKED IMPLEMENTATION OF QUEUE

The first decision in planning the linked-list implementation of the Queue class is which

end of the list will correspond to the front of the queue. Recall that items need to be added to the

rear of the queue, and removed from the front of the queue. Therefore, we should make our

choice based on whether it is easier to add/remove a node from the front/end of a linked list.

If we keep pointers to both the first and last nodes of the list, we can add a node at either

end in constant time. However, while we can remove the first node in the list in constant time,

removing the last node requires first locating the previous node, which takes time proportional

to the length of the list. Therefore, we should choose to make the end of the list be the rear of the

queue, and the front of the list be the front of the queue.

Representation of queue

Fig: 2.7 Representation of Linked List in Queue

Struct queue

{

int data;

struct *next;

} *front, *rear;

front=NULL;

rear=NULL;

 52

CS8391 DAT A STRUCTURES UNIT II

1. Is Empty :

Void isempty(struct queue *front, struct queue *rear)

{

If((front==NULL) && (rear==NULL))

Printf(“Queue is empty”);

}

2. Creation :

Void create(struct queue *front, struct queue *rear, int n)

{

front=malloc(sizeof(struct queue));

front-->data=n;

front-->next=NULL;

rear=front;

scanf(“%d”,&n);

while(n!=0)

{

rear-->next=malloc(sizeof(struct queue));

rear=rear-->next;

scanf(“%d”, &n);

}

rear-->next=NULL;

}

3. Enqueue :

Void enqueue(struct queue *rear, int num)

{

rear-->next=malloc(sizeof(struct queue));

rear=rear-->next;

rear-->data=num;

rear-->next=NULL;

}

Before Insertion After Insertion

4.Dequeue :

Void dequeue(struct queue *front)

{

 53

CS8391 DAT A STRUCTURES UNIT II

Struct queue *t;

t=front;

front=front-->next;

free(t);

}

Before Deletion: After Deletion:

5. Display Rear :

Void displayrear(struct queue *rear)

{

printf(“%d”,rear-->data);

}

 2.5 CIRCULAR QUEUE

In Circular Queue, the insertion of a new element is performed at the very first location

of the queue if the last location of the queue is full, in which the first element comes just after the

last element.

To view the array that holds the queue as a circle rather than as a straight line. That is, we

imagine the first element of the array as immediately following its last element.

This implies that even if the last element is occupied, a new value can be inserted behind

it in the first element of the array as long as that first element is empty. This concept of queue is

known as Circular Queue.

Fig: 2.8 Representation of Circular Queue

 54

CS8391 DAT A STRUCTURES UNIT II

CIRCULAR QUEUE USING ARRAYS

ADT’s of circular queue using array :

1) Is empty

2) Is full

3) Enqueue

4) Dequeue

5) Display Rear

6) Display Front

7) Display Queue

8) Creation

1. IsEmpty :

Void isempty(int queue[], int front, int rear)

{

If(front==rear== -1)

Printf(“Queue is empty”);

Else

Printf(“Queue is not empty”);

}

2. Is Full :

Void isfull(int queue[],int front, int rear)

{

If((rear+1) % qsize==front)

Printf(“Queue is Full”);

Else

Printf(“queue is not full”);

}

3. Creation :

Void create(int queue[],int front,int rear,int n)

{

int i; for(i=0;i<n;i++)

scanf(“%d”,&queue[i]);

front=0;

rear=n-1;

}

4. Enqueue :

Void enqueue(int queue[],int front,int rear, int n)

{

 55

CS8391 DAT A STRUCTURES UNIT II

if((rear+1) % qsize==front)

printf(“Overflow”);

else

{

rear=(rear+1)%qsize;

queue[rear]=n;

}

}

5. Dequeue :

Void dequeue(int queue[],int front, int rear)

{

int x; if(front==rear==

-1) printf(“Queue

empty”); else

if(front==rear)

{ x=queue[front];

front=(front+1) % qsize;

}

Printf(“%d”,x);

}

6. Display rear :

Void disprear(int queue[],int rear)

{

Printf(“%d”,queue[rear]);

}

7.Display Front :

Void displayfront(int queue[], int front)

{

Printf(“%d”, queue[front]);

}

8. Display Queue :

Void display(int queue[], int front, int rear)

{

If(rear<front)

{

After enqueue

 56

CS8391 DAT A STRUCTURES UNIT II

For(i=front;i<qsize;i++)

Printf(“%d”,queue[i]);

For(i=0;i<=rear;i++)

Printf(“%d”,queue[i]);

}

Else

{

For(i=front;i<=rear;i++)

Printf(“%d”,queue[i]);

}

}

CIRCULAR QUEUE USING LINKED LIST

struct queue

{

Int data;

Struct queue *next;

} *rear=NULL;

Fig: 2.9 Representation of Circular Queue using

Linked List

1.IsEmpty:

Void isempty(struct queue *front, struct queue *rear)

{

If(front==rear==NULL)

Printf(“queue is empty”);

Else

Printf(“queue is not empty”);

}

2.Enqueue

void enqueue(struct queue *front, struct *rear, int num)

{

If(front!=NULL && rear!=NULL)

{ Struct queue *new;

new=malloc(sizeof(struct queue));

new-->data=num;

rear-->next=new;

rear=new;

new-->next=front;

}

 57

CS8391 DAT A STRUCTURES UNIT II

Else if(front==rear==NULL)

{

front==malloc(sizeof(struct queue));

front-->data=num;

front-->next=front;

rear=front;

} }

3.Dequeue

Void dequeue(struct queue *front, struct queue *rear)

{

Struct queue *temp;

temp=front;

front=front-->next;

rear-->next=front;

free(temp);

}

4.Display Rear

Void displayrear(struct queue *rear)

{

Printf(“%d”,rear-->data);

}

6.Display

5.Display Front

Void displayfront(struct queue *front)

{

Printf(“%d”,front-->data);

}

Void display(struct queue *front, struct queue *rear)

{

Struct queue *temp;

temp=front;

while(temp-->next!=front)

{

Printf(“%d”,temp-->data);

temp=temp-->next;

}

Printf(“%d”,temp-->data);

}

 2.6 PRIORITY QUEUE

Priority Queue is more specialized data structure than Queue. Like ordinary queue,

priority queue has same method but with a major difference. In Priority queue items are ordered

by key value so that item with the lowest value of key is at front and item with the highest value

of key is at rear or vice versa. So we're assigned priority to item based on its key value. Lower

the value, higher the priority. Following are the principal methods of a Priority Queue.

 58

CS8391 DAT A STRUCTURES UNIT II

Basic Operations

 Insert / Enqueue − add an item to the rear of the queue.

 Remove / Dequeue − remove an item from the front of the queue.

Priority Queue Representation

Fig: 2.10 Representation of Priority Queue

We're going to implement Queue using array in this article. There is few more operations

supported by queue which are following.

 Peek − get the element at front of the queue.

 isFull − check if queue is full.

 isEmpty − check if queue is empty.

Insert / Enqueue Operation

Whenever an element is inserted into queue, priority queue inserts the item according to its

order. Here we're assuming that data with high value has low priority.

 59

CS8391 DAT A STRUCTURES UNIT II

Fig: 2.11 Representation of Priority Queue Operation-Insertion

void insert(int data)

{

int i = 0;

if(!isFull()){

// if queue is empty, insert the data

if(itemCount == 0){

intArray[itemCount++] = data;

}else{

// start from the right end of the queue

for(i = itemCount - 1; i >= 0; i--){

// if data is larger, shift existing item to right end

if(data > intArray[i]){

intArray[i+1] = intArray[i];

}else{

break;

}

}

// insert the data

intArray[i+1] = data;

itemCount++;

}

}

}

 60

CS8391 DAT A STRUCTURES UNIT II

Remove / Dequeue Operation

Whenever an element is to be removed from queue, queue get the element using item count.

Once element is removed. Item count is reduced by one.

Fig: 2.12 Representation of Priority Queue Operation-Deletion

int removeData()

{

return intArray[--itemCount];

}

 2.7 DOUBLE ENDED QUEUE - DeQueue

A dequeue (short for double-ended queue) is an abstract data structure for which

elements can be added to or removed from the front or back (both end). This differs from a

normal queue, where elements can only be added to one end and removed from the other. Both

queues and stacks can be considered specializations of deques, and can be implemented using

deques.

It can be implemented using

 Array

 Linked lists

 61

CS8391 DAT A STRUCTURES UNIT II

Two types of Dequeue are

1. Input Restricted Dequeue

2. Ouput Restricted Dequeue

Dequeue using Array

Fig: 2.13 Representation of DeQueue

1. Input Restricted Deque

Where the input (insertion) is restricted to the rear end and the deletions has the options either

end

Fig: 2.14 Representation of DeQueue – Input Restricted Dequeue

Void enqueue-at-last(int queue[],int rear,int num)

{

if(rear==size-1)

printf(“Overflow”);

else

rear=rear+1;

queue[++rear]=num;

}

Void dequeue-at-front(int queue[], int front)

{

if(front== -1)

printf(“Underflow”);

else

 62

CS8391 DAT A STRUCTURES UNIT II

{

printf(“%d”,queue[front]);

++front;

}

Void dequeue-at-last(int queue[], int front)

{

if(front== -1)

printf(“Underflow”);

else

{

Int x;

printf(“%d”,queue[front]);

rear=rear-1;

}

2. Ouput Restricted Deque

Where the output (deletion) is restricted to the front end and the insertions has the option either

end.

Fig: 2.15 Representation of DeQueue – Output Restricted Dequeue

Void enqueue-at-last(int queue[],int rear,int num)

{

if(rear==size-1)

printf(“Overflow”);

else

rear=rear+1;

queue[++rear]=num;

}

Void enqueue-at-front(int queue[],int front,int num)

{

front=front-1;

queue[front]=num;

}

 63

CS8391 DAT A STRUCTURES UNIT II

Void dequeue-at-last(int queue[], int front)

{

if(front== -1)

printf(“Underflow”);

else

{

Int x;

printf(“%d”,queue[front]);

rear=rear-1;

}

The Operations in Double Ended Queue using Linked List

Fig: 2.16 Representation of De-Queue using Linked List

Two types of De-queue are

1. Input Restricted De-queue

2. Ouput Restricted De-queue.

1. Input Restricted De-queue

Where the input (insertion) is restricted to the rear end and the deletions has the options either

end

 64

CS8391 DAT A STRUCTURES UNIT II

Fig: 2.17 Representation of DeQueue using Linked List-Input

Void enqueue-at-last(struct queue *rear, int num)

{

Struct node *temp;

temp=malloc(sizeof(struct queue));

rear=rear-->next;

rear-->data=num;

rear-->next=NULL;

}

Void dequeue-at-front(struct queue *front)

{

Struct queue *t;

t=front;

front=front-->next;

free(t);

}

Void dequeue-at-last(struct queue *front)

{

Struct node *temp,*temp1;

temp=front;

{

temp1=temp;

rear=temp1;

free(t);

}

2. Output Restricted De-queue

Where the output (deletion) is restricted to the front end and the insertions has the option

either end.

 65

CS8391 DAT A STRUCTURES UNIT II

 66

Fig: 2.18 Representation of De-Queue using Linked List-Output

Void enqueue-at-last(struct queue *rear, int num)

{

Struct node *temp;

temp=malloc(sizeof(struct queue));

rear=rear-->next;

rear-->data=num;

rear-->next=NULL;

}

Void enqueue-at-first(struct queue *rear,struct queue *front, int num)

{

Struct node *temp;

temp=malloc(sizeof(struct queue));

temp-->data=num;

temp-->next=front;

front=temp;

}

CS8391 DAT A STRUCTURES UNIT II

 67

Void dequeue-at-last(struct queue *front)

{

Struct node *temp,*temp1;

temp=front;

{

temp1=temp;

rear=temp1;

free(t);

}

 2.8 APPLICATION OF QUEUE

JOB SCHEDULING

In the operating system various programs are getting executed.

We will call these programs as jobs. In this process, some programs are in executing

state. The state of this program is called as running state.

Some programs which are not executing but they are in position to get executed at any

time such programs are in the ready state. And there are certain programs which are neither in

running state nor in ready state.

Such programs are in a state called as blocking state.The operating system maintains a

queue of all such running state, ready state, blocked state programs. Thus use of queue help the

operating system to schedule the jobs.

The jobs which are in running state are removed after complete execution of each job,

then the jobs which are in ready state change their state from ready to running and get entered in

the queue for running state. Similarly the jobs which are in blocked state can change their state

from blocked to ready state.

Running

state

Blocked

State

Ready

State

Fig: 2.19 Job Scheduling

CS8391 DAT A STRUCTURES UNIT II

 68

R2 R3 R4 R5 R6 R7 B1 B2

Queue for running state jobs Queue for ready state jobs

J1 J2 J3 J4 R1

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Front rear Front rear

Queue for blocked state jobs

B3 B4 B5 B6

0 1 2 3 4 5 6 7

Fig: 2.20 Jobs are changing their state of execution

These jobs then can be entered in the queue for ready state jobs. Thus every jobs change

its state and finally get executed. The queues are effectively used in the operating system for

scheduling the jobs.

PART-A

STACK ADT

1. Define stack [L1]

2. What are the operations in stack ADT? [L1]

3. What are the applications of stack?[N/D 2018][M/J 2014][M/J 2013] [L1]

4. What is stack overflow? [L1]

5. What is stack pop? [L1]

6. What is stack push? [L1]

7. Define stack full and stack empty. [L1]

8. Differentiate between linked list and stack. [L1]

9. What is the data structure used to perform recursion? How? [L2]

EVALUATING ARITHMETIC EXPRESSIONS- OTHER APPLICATIONS

10. Define expression. Give its types. [L1]

11. List the types of expression representation. [L1]

12. What are the postfix and prefix forms of the expression? A+B*(C-D)/(P-R) [N/D 14] L3]

QUEUE ADT - APPLICATIONS OF QUEUES

13. Define queue.[A/M 2015] [L1]

14. What are the operations on a queue? [L1]

CS8391 DAT A STRUCTURES UNIT II

 69

15. What are the types of queues? [L1]

16. List the applications of queue. [L1]

17. Differentiate between Stack and queue. [L1]

CIRCULAR QUEUE IMPLEMENTATION

18. What are circular queues? [L1]

19. How circular queue is considered superior to linear queue? [L3]

20. Differentiate between linear queue and circular queue. [L1]

21. List the applications of circular queue. [L1]

22. Give the advantage and disadvantages of circular queue. [L1]

DOUBLE ENDED QUEUES

23. What is Double ended queue? [L1]

24. What are the operations that can be performed on Double ended queue? [L3]

25. Differentiate between queue and double ended queue. [L1]

26. List the applications of double ended queue. [L1]

27. Give the advantages and disadvantages de-queue. [L1]

28. What is priority queue? [N/D 2018] [L1]

PART B

STACK ADT

1. Explain the operations and the implementation of Stack ADT using Array.[A/M 2015] [L1]

2. Explain in detail about linked list implementations of stack ADT. [Pg.No:41] [L1]

EVALUATING ARITHMETIC EXPRESSIONS- OTHER APPLICATIONS

3. Explain in detail about the evaluation of arithmetic expression. Write an algorithm to convert

infix to postfix. [N/D 2018] [M/J 2013] [L2]

4. Explain the various application of stack? [Pg.No:45] [L1]

QUEUE ADT

5. Explain the operations and the implementation of Queue ADT using Array[N/D 2012] [L1]

6. What is queue ADT? Give linked implementation of queue.[Pg.No:48 & 52] [L1]

CS8391 DAT A STRUCTURES UNIT II

CIRCULAR QUEUE IMPLEMENTATION

7. Explain about circular queue with example. [N/D 2018] [L1]

DOUBLE ENDED QUEUES - APPLICATIONS OF QUEUES

8. Write an algorithm to perform the four operations in double ended queue that is implemented

as array. [Pg.No:61] [L2]

9. Write an algorithm to perform the operations in double ended queue that is implemented as

linked list. [Pg.No:64] [L2]

10. Write about any one application of queue. [Pg.No:67] [L1]

PART -A

STACK ADT

1. Define stack

A stack is a linear data structure (ADT) that stores in which items can be added and

removed only at one ends. We can access only the item that is currently at the top. The stack

is also called as LIFO i.e. Last In First Out data structure.

2. What are the operations in stack ADT?

 push() – add an item to the top of the stack

 pop() – remove the items at the top of the stack

 pop() – returns the element at the top of the stack without removing it

 isEmpty() – checks if the stack is empty.

3. What are the applications of stack?

 Page-visited history in a Web browser

 Undo sequence in a text editor

 Function calls

 Balancing parenthesis

 Evaluating algebraic expression

4. What is stack overflow?

The attempt to push an element in an already filled stack will result in stack overflow. This is

an exception condition.

5. What is stack pop?

The process of removing a element on the top of the stack is pop operation.

void pop ()

{

 70

CS8391 DAT A STRUCTURES UNIT II

 71

int item;

item = st.s[st.top];

st.top -- ;

return(item);

}

6. What is stack push?

The process of inserting a new element on the top of the stack is push operation. he value

pushed will be inserted at the position indicated by the top pointer. After the push operation,

the top will point to the next slot in the array that is ready for the next push.

void push(int item)

{ st.top++;

st.s[st.top]=item;

}

7. Define stack full and stack empty.

Stack full

Stackfull () – This condition indicates whether the stack is full or not. if the stack is full

then we cannot insert the elements in the stack. Before performing push we must check

stackfull () condition.

int stackfull ()

{

if (st.top?=size-1)

return 1;

else

return 0;

}

Thus stfull is a Boolean function. If stack is full it returns 1 otherwise it returns 0.

Stack empty

This condition indicates whether the stack is empty or not. if the stack is empty then we

cannot pop or remove an y element from the stack.

Before popping the elements from the stack we should check stackempty() condition.

int stackempty ()

{

if (st.top==-1)

return 1;

else

return 0;

CS8391 DAT A STRUCTURES UNIT II

 72

}

8. Differentiate between linked list and stack.

S.No Linked List Stack

1 A linked list is basically a series of

Nodes. Each node contains two things:

the data and the pointer to the next

Node in the Linked List

A stack is an abstract data type where there

are only two operations, push and pop.

2 Linked-List describes how data is

stored

A stack deals with what data comes first or

last.

9. What is the data structure used to perform recursion? How?

Stack: Because of its LIFO property it remembers its „caller‟ so knows whom to return

when the function has to return. Recursion makes use of system stack for storing the return

addresses of the function calls.

Every recursive function has its equivalent iterative (non-recursive) function. Even when

such equivalent iterative procedures are written, explicit stack is to be used.

EVALUATING ARITHMETIC EXPRESSIONS- OTHER APPLICATIONS

10. Define expression. Give its types.

Expression is a string of operands and operators. Operands are some numeric values and

operators are of two types: Unary operator and Binary operator.

11. List the types of expression representation.

 Infix expression (a+b) – operator in between the operands

 Postfix expression (+ab) – operator before the operands

 Prefix expression (ab+) operator after the operands

12. What are the postfix and prefix forms of the expression? A+B*(C-D)/(P-R)

 POSTFIF FORM : ABCD-*PR-/+

 PREFIX FORM : +A/*B-CD-PR

QUEUE ADT - APPLICATIONS OF QUEUES

13. Define queue.

A queue is an ADT in which items are added at one end (rear or back end) and removed

from the other end (front end) in a first in, first out fashion (FIFO). The elements in a queue

CS8391 DAT A STRUCTURES UNIT II

 73

are accessed only at the front end. The insertion operation in a queue is called en-queue and

deletion operation is called de-queue.

Representation of queue:
struct queue
{

int que[size], front, rear;

} Q;

14. What are the operations on a queue?

 enqueue() – Insert an element at the read end of the queue.

 dequeue() – Remove an element at the front end of the queue

 isFull() – Checks whether a queue is full.

 isEmpty() – Checks whether a queue is empty.

15. What are the types of queues?

 Simple queues.

 Circular queue.

 Double ended queue.

 Priority queue.

16. List the applications of queue.

 Job scheduling

 Categorizing data

 Simulation and modeling

 Time sharing systems

 Mathematics user queuing theory

 Computer networks

 In implanting depth first search and breadth first search.

17. Differentiate between Stack and queue.

S.No Stack Queue

1

Stack is a collection of object that

works in LIFO (Last In First Out)

mechanism

Queue is a collection of objects that works

in FIFO (First In First Out)

2

In the stack the new items is inserted

with push method and deleted with pop

method

In the queue the new item is inserted with

en-queue method and deleted with de-

queue method.

3
Only one pointer (top) is needed to

access the data.

Two pointer front and rear are needed to

access the data.

CS8391 DAT A STRUCTURES UNIT II

 74

The data is inserted and deleted at the
4

top pointer

The data is inserted at the rear and deleted

at the front pointer.

CIRCULAR QUEUE IMPLEMENTATION

18. What are circular queues?

Circular queue are special queue that are to store continuous data by starting from the

beginning of the queue when the end is reached (i.e) the arrangement of element in a circular

queue is in such a way that the first element comes after the last element. Circular queue have

a fixed size.

19. How circular queue is considered superior to linear queue?

The circular queue overcomes the disadvantage of linear queue. In linear queue, the

empty spaces caused due to dequeue operation at the front end are filled by shifting all the

remaining element of the queue. This is an unnecessary

overhead.

The formula which has to be applied for setting the front and

rear pointers:

 rear = (rear + 1) % size

 front = (front + 1) % size

20. Differentiate between linear queue and circular queue.

S.No Linear queue Circular queue

1

A linear queue is like a straight line in

which all elements or instructions stand

one behind the other.

A circular queue is like a chain where

head and tail are connected.

2
They have a definite starting and ending

point.

They don’t have a definite starting and

ending point.

3 They don’t use space efficiently. They use space efficiently.

4 Their size is not fixed Their size is fixed.

21. List the applications of circular queue

 CD/DVD burning

 Hardware print buffer

 Computer controlled traffic systems (light glow in circular fashion).

CS8391 DAT A STRUCTURES UNIT II

 75

22. Give the advantage and disadvantages of circular queue.

Advantage:

 The memory of the deleted element can be reused.

 More number of insertions and deletions can be done.

Disadvantage:

 The queue is static.

DOUBLE ENDED QUEUES

23. What is Double ended queue?

A double-ended queue (deque pronounced as deck) is an abstract data structure that

implements a queue for which elements can only be added to or removed from the front or

rear end. It is also often called a head-tail linked list.

Types:

 Input restricted queue: In this type insertion is allowed at one end and deletion is allowed

at both ends.

 Output restricted queue: In this type deletion is allowed at one end and insertion is

allowed at both ends.

24. What are the operations that can be performed on Double ended queue?

 Insert an item from front end (En-queue Head)

 Insert an item from rear end (En-queue Tail

 Delete an item from front end (De-queue Head)

 Delete an item from rear end (De-queue Tail)

25. Differentiate between queue and double ended queue.

S.No Queue Double Ended Queue (Deque)

1
Queues support insertion at rear end

and deletion at front end

In deques insertions and deletions can be

made at both front and rear end.

2
Queues are classifies at circular

queues and deques

Deques are classified as input restricted and

output restricted deques.

26. List the applications of double ended queue.

 A-steal job scheduling algorithm (Multiprocessor scheduling)

o The processor gets the first element from the double ended queue.

o When one of the processor completes execution of its own thread it can steal a

thread from another processor.

CS8391 DAT A STRUCTURES UNIT II

 76

o It gets the last element from the de-queue of another processor and executes it.

 Undo-Redo operations in software applications

27. Give the advantages and disadvantages dequeue.

Advantages of De-queue:

 Efficient in searching an element.

 Insertion and deletion are easy

Disadvantages of De-queue:

 More complicated programming

28. What is priority queue?

It is a type of queue in which each element is assigned certain priority such that the order

of deletion of elements is decided by their associated priorities.

