
CS8391 DATA STRUCTURES UNIT - IV

 111

UNIT IV NON LINEAR DATA STRUCTURES - GRAPHS

Definition – Representation of Graph – Types of graph - Breadth-first traversal - Depth-first

traversal – Topological Sort – Bi-connectivity – Cut vertex – Euler circuits – Applications of

graphs.

4.1 Definition - RESENTATION OF GRAPHS

 A graph G = {V, E} consists of a set of vertices V and set of edges E.

 Vertices are referred to as nodes in graph and the line joining the two vertices are referred

to as Edges.

Types of Graphs

Graphs are of two types

 Directed graphs.

 Undirected Graphs.

(i) Directed Graphs

Directed graph is a graph which consists of directed edges. It is also referred as Digraph.

Fig: 4.1 Directed graphs.

In Directed graph, the edges between the vertices are ordered. E1 is the edge between the

vertices V1 and V2.

 V1 is called the Head and V2 is called the Tail.

 So, E1 is a set of (V1, V2) and not of (V2, V1).

(ii) Undirected Graphs:

 Undirected graph is a graph, which consists of undirected edges.

Fig: 4.2 undirected graphs.

CS8391 DATA STRUCTURES UNIT - IV

 112

 In Undirected graph, the edges between the vertices are not ordered.

 So, E1 is a set of (V1, V2) or (V2, V1).

Terms Related To Trees

 Adjacent nodes : two nodes are adjacent if they are connected by an edge

 Path: a sequence of vertices that connect two nodes in a graph

 Length of path of graph: is the number of edges in the path

 In-degree of a node x in G is the number of edges coming to x.

 Out-degree of x is the number of edges leaving x.

Degree and Neighbor:

Let G be an undirected graph

 The degree of a node x is the number of edges that have x as one of their end nodes

 The neighbors of x are the nodes adjacent to x

Weighted Graphs:

A graph is said to be weighted graph if every edge in the graph is assigned a weight or value.

It can be either a directed or an undirected graph.

Fig: 4.3 weighted graphs.

Complete Graph:

 A complete graph is a graph in which there is an edge between every pair of vertices.

 A complete graph with n vertices will have n(n - 1) /2 edges.

Fig: 4.4 complete graphs.

CS8391 DATA STRUCTURES UNIT - IV

 113

Sub Graph

A sub graph G’ of G is a graph G such that the set of vertices and set of edges of G’ are

proper subset of the set of edges of G.

Fig: 4.5 Sub graphs.

Connected Graphs

An undirected graph is said to be connected if for every pair of distinct vertices Vi and Vj,

there is a path from Vi to Vj in G.

Fig: 4.6 Connected graphs.

Strongly Connected Graphs:

A directed graph is said to be strongly connected if and only if, for each pair of distinct

vertices Vi and Vj, there is a path from Vi to Vj in G.

Fig: 4.7 strongly connected graphs.

Cyclic Graphs

A directed graph is said to be a cyclic graph in which no vertex is repeated except the first

and last vertex are the same.

Cycle = A -> B-> C ->A

Fig: 4.8 Directed Cyclic graphs.

CS8391 DATA STRUCTURES UNIT - IV

 114

An undirected graph is said to be a cyclic graph in which if any edge appears more than once

it appears with the same orientation.

Fig: 4.9 Undirected Cyclic graphs.

Acyclic Graphs

A graph is said to be a acyclic graph if it has no cycles.

 DAG – Directed acyclic graph (no specific cycle)

Undirected acyclic graph

Fig: 4.10 Acyclic graphs.

4.2 TYPES OF GRAPHS -Representation

There are two representations of graphs:

 Adjacency matrix representation

 Adjacency lists representation

(i) Representing the graph as adjacency matrix

 In this representation, each graph of n nodes is represented by an n x n matrix A, that is, a

two-dimensional array A.

 The nodes are labeled 1,2,…,n.

A[i][j] = 1 if (i,j) is an edge

A[i][j] = 0 if (i,j) is not an edge

Data Structures for Graphs as Adjacency Matrix

 A two-dimensional matrix or array that has one row and one column for each node in the

graph

CS8391 DATA STRUCTURES UNIT - IV

 115

 For each edge of the graph (Vi, Vj), the location of the matrix at row i and column j is 1

 All other locations are 0

 For an undirected graph, the matrix will be symmetric along the diagonal

 For a weighted graph, the adjacency matrix would have the weight for edges in the graph,

zeros along the diagonal, and infinity (∞) every place

Advantage

 Simple to implement

 Easy and fast to tell if a pair (i,j) is an edge: simply check if A[i][j] is 1 or 0

Disadvantage

 Even if there are few edges, the matrix takes O(n2) in memory

(ii) Representing the graph as adjacency list

A graph of n nodes is represented by a one-dimensional array L of linked lists, where

 A list of pointers, one for each node of the graph

 L[i] is the linked list containing all the nodes adjacent from node i.

 The nodes in the list L[i] are in no particular order

Data Structures for Graphs as Adjacency List

 A list of pointers, one for each node of the graph.

 These pointers are the start of a linked list of nodes that can be reached by one edge of

the graph.

 For a weighted graph, this list would also include the weight for each edge.

4.3 BREADTH-FIRST SEARCH

Graph traversal is technique used for searching a vertex in a graph. The graph traversal is

also used to decide the order of vertices to be visit in the search process. A graph traversal finds

the egdes to be used in the search process without creating loops that means using graph traversal

we visit all verticces of graph without getting into looping path.

There are two graph traversal techniques and they are as follows...

1. BFS (Breadth First Search)

2. DFS (Depth First Search)

BFS (BREADTH FIRST SEARCH)

BFS traversal of a graph, produces a spanning tree as final result. Spanning Tree is a graph

without any loops. We use Queue data structure with maximum size of total number of vertices

in the graph to implement BFS traversal of a graph.

We use the following steps to implement BFS traversal...

Step 1: Define a Queue of size total number of vertices in the graph.

CS8391 DATA STRUCTURES UNIT - IV

 116

Step 2: Select any vertex as starting point for traversal. Visit that vertex and insert it into

the Queue.

Step 3: Visit all the adjacent vertices of the verex which is at front of the Queue which is

not visited and insert them into the Queue.

Step 4: When there is no new vertex to be visit from the vertex at front of the Queue then

delete that vertex from the Queue.

Step 5: Repeat step 3 and 4 until queue becomes empty.

Step 6: When queue becomes Empty, then produce final spanning tree by removing unused

edges from the graph

Example:

Consider the following example graph to perform BFS traversal

CS8391 DATA STRUCTURES UNIT - IV

 117

CS8391 DATA STRUCTURES UNIT - IV

III SEM CSE – CKCET 118

CS8391 DATA STRUCTURES UNIT - IV

III

SEM CSE 119

Application of breadth first search

 To check whether the graph is connected or not

Program for breadth first search

#include<stdio.h>

#include<conio.h>

int a[20][20],q[20],visited[20],n,i,j,f=0,r=-1;

void bfs(int v) {

 for (i=1;i<=n;i++)

 if(a[v][i] && !visited[i])

 q[++r]=i;

 if(f<=r) {

 visited[q[f]]=1;

 bfs(q[f++]);

 }

}

void main() {

 int v;

 clrscr();

 printf("\n Enter the number of vertices:");

 scanf("%d",&n);

 for (i=1;i<=n;i++) {

CS8391 DATA STRUCTURES UNIT - IV

 120

 q[i]=0;

 visited[i]=0;

 }

 printf("\n Enter graph data in matrix form:\n");

 for (i=1;i<=n;i++)

 for (j=1;j<=n;j++)

 scanf("%d",&a[i][j]);

 printf("\n Enter the starting vertex:");

 scanf("%d",&v);

 bfs(v);

 printf("\n The node which are reachable are:\n");

 for (i=1;i<=n;i++)

 if(visited[i])

 printf("%d\t",i); else

 printf("\n Bfs is not possible");

 getch();

}

Output:

Enter Number of Vertices:4

Enter graph data in Matrix form:

1 0 1 0

0 0 1 1

0 1 0 1

1 1 1 1

Enter the Starting Vertex: 1

The nodes which are reachable are

1 2 3 4

4.4 DEPTH FIRST SEARCH

DFS (Depth First Search)

DFS traversal of a graph, produces a spanning tree as final result. Spanning Tree is a graph

without any loops. We use Stack data structure with maximum size of total number of vertices

in the graph to implement DFS traversal of a graph.

We use the following steps to implement DFS traversal...

Step 1: Define a Stack of size total number of vertices in the graph.

Step 2: Select any vertex as starting point for traversal. Visit that vertex and push it on to

the Stack.

Step 3: Visit any one of the adjacent vertex of the verex which is at top of the stack which is

not visited and push it on to the stack.

CS8391 DATA STRUCTURES UNIT - IV

 121

Step 4: Repeat step 3 until there are no new vertex to be visit from the vertex on top of the

stack.

Step 5: When there is no new vertex to be visit then use back tracking and pop one vertex

from the stack.

Step 6: Repeat steps 3, 4 and 5 until stack becomes Empty.

Step 7: When stack becomes Empty, then produce final spanning tree by removing unused

edges from the graph

Example:

CS8391 DATA STRUCTURES UNIT - IV

 122

CS8391 DATA STRUCTURES UNIT - IV

 123

CS8391 DATA STRUCTURES UNIT - IV

 124

CS8391 DATA STRUCTURES UNIT - IV

 125

Application of Depth First Search

 To check whether the undirected graph is connected or not.

 To check whether the connected undirected graph is biconnected or not.

 To check the Acyclicity of the directed graph.

Program for Depth First Search

 #include<stdio.h>

#include<conio.h>

int a[20][20],reach[20],n;

void dfs(int v)

{

 int i;

 reach[v]=1;

 for (i=1;i<=n;i++)

 if(a[v][i] && !reach[i])

{

 printf("\n %d->%d",v,i);

 dfs(i);

}

}

void main()

{

 int i,j,count=0;

 clrscr();

 printf("\n Enter number of vertices:");

 scanf("%d",&n);

 for (i=1;i<=n;i++)

{

 reach[i]=0;

 for (j=1;j<=n;j++)

 a[i][j]=0;

CS8391 DATA STRUCTURES UNIT - IV

 126

 }

 printf("\n Enter the adjacency matrix:\n");

 for (i=1;i<=n;i++)

 for (j=1;j<=n;j++)

 scanf("%d",&a[i][j]);

 dfs(1);

 printf("\n");

 for (i=1;i<=n;i++) {

 if(reach[i])

 count++;

 }

 if(count==n)

 printf("\n Graph is connected"); else

 printf("\n Graph is not connected");

 getch();

}

OUTPUT:

Enter Number of Vertices:4

Enter the Adjacency Matrix:

0 1 0 1

1 1 1 1

0 1 1 0

0 1 1 1

12

23

24

Graph is connected

4.5 TOPOLOGICAL SORTING

Algorithm:

1. From a given graph find a vertex with no incoming edges. Delete it along with an the

edges outgoing from it. If there are more than one such vertices then break the tie

randomly.

2. Note the vertices that are deleted.

3. All these recorded vertices give topologically sorted list.

Example 1:

A C

B D

E

CS8391 DATA STRUCTURES UNIT - IV

 127

Choose vertex B, because it has no incoming edge, delete it along with its adjacent edges.

4.6 BI CONNECTED GRAPH

 An undirected graph is called Biconnected if there are two vertex-disjoint paths

between any two vertices.

 In a Biconnected Graph, there is a simple cycle through any two vertices.

By convention, two nodes connected by an edge form a biconnected graph, but this

does not verify the above properties. For a graph with more than two vertices, the

above properties must be there for it to be Biconnected.

Following are some examples.

Delete B A C

D

E Delete A
C

D

E
Delete D

Sorted List B

Sorted List B, A

Sorted List B, A, D

Delete C C

E
E

Delete E

Sorted List B, A, D, C

Sorted List B, A, D, C, E

https://www.geeksforgeeks.org/wp-content/uploads/Biconnected11.png
https://www.geeksforgeeks.org/wp-content/uploads/Biconnected1.png

CS8391 DATA STRUCTURES UNIT - IV

 128

Fig: 4.11 Bi-connected graphs.

 A connected graph is Bi connected if it is connected and doesn’t have any Articulation

Point.

 We mainly need to check two things in a graph.

1) The graph is connected.

2) There is not articulation point in graph.

 We start from any vertex and do DFS traversal. In DFS traversal, we check if there is any

articulation point.

 If we don’t find any articulation point, then the graph is Biconnected.

 Finally, we need to check whether all vertices were reachable in DFS or not. If all

vertices were not reachable, then the graph is not even connected.

4.7 CUT VERTEX - Articulation Points (or Cut Vertices) in a Graph

Definition:

 A vertex V is an Undirected graph G is called a cut vertex if removing it disconnects the graph.

 The cut vertex is also called as articulation point.

 The following example represents the concept of cut vertex.

https://www.geeksforgeeks.org/wp-content/uploads/Biconnected.png
https://www.geeksforgeeks.org/wp-content/uploads/Biconnected4.png
https://www.geeksforgeeks.org/wp-content/uploads/Biconnected5.png
https://www.geeksforgeeks.org/articulation-points-or-cut-vertices-in-a-graph/
https://www.geeksforgeeks.org/articulation-points-or-cut-vertices-in-a-graph/

CS8391 DATA STRUCTURES UNIT - IV

 129

Fig: 4.12 Cut Vertex.

Here Vertex C is a CUT VERTEX

 On removing C we get the disconnected Component as.

Fig: 4.13 Cut Vertex (Disconnected Component)

 The concept of vertex are useful for designing reliable networks

4.8 EULER CIRCUITS

 In Graph Theory there is a famous problem known Konigsberg Bridge Problem.

 In this problem the main theme was cross the seven bridge exactly once to visit various

cities.

 From this problem, the concept of Euler Circuit is developed. Let us define the

terminologies Euler path and Euler Circuit.

Euler Path:

 A Path in a graph G is Called Euler Path if it includes every edge exactly once and every

vertex gets visited.

 Euler Circuit on graph G is an Euler path that visits each vertex of graph G and uses

every edge of G.

A

B

C

E

G

F

D

A

B D

E

F

G

CS8391 DATA STRUCTURES UNIT - IV

 130

For Example

Fig: 4.13 Euler Circuit

The Euler Circuit is A-B-E-A-D-B-C-E-D-C-A

4.9 APPLICATION OF GRAPHS

 In Computer networking such as Local Area Network (LAN), Wide Area Networking

(WAN), internetworking.

 In Telephone cabling graph theory is effectively used

 In Job Scheduling algorithm

4.9.1 FINDING SHORTEST PATH

Shortest Path Algorithm

The shortest path algorithm determines the minimum cost of the path from source to

every other vertex. There are two types of shortest path problem such as

1. The single source shortest path problem.

2. The all pair shortest path problem.

The single source shortest path algorithm finds the minimum cost from single source

vertex to all other vertices. Dijkstra’s algorithm is used to solve this problem which follows

the greedy technique.

All pairs shortest path problem finds the shortest distance from each vertex to all other vertices.

To solve this problem dynamic programming technique known as floyd’s algorithm is used.

These algorithms are applicable to both directed and undirected weighted graphs provided

that they do not contain a cycle of negative length.

B

A C

E D

CS8391 DATA STRUCTURES UNIT - IV

 131

DIJKSTRA'S SHORTEST PATH

The Dijkstra's shortest path algorithm suggests the shortest path from some source node to

the some other destination node. The source node or the node from we start measuring the

distance is called the start node and the destination node is called the end node. In this algorithm

we start finding the distance from the start node and find all the paths from it to neighbouring

nodes. Among those which ever is the nearest node that path is selected. This process of finding

the nearest node is repeated till the end node. Then whichever is the path that path is called the

shortest path.

Since in this algorithm all the paths are tried and then we are choosing the shortest path

among them, this algorithm is solved by a greedy algorithm. One more thing is that we are

having all the vertices in the shortest path and therefore the graph doesn't give the spanning tree.

Example:

P = Set which is for nodes which have already selected.

T = Remaining node

Step 1:

v = a

P = {a}, T = {b,c,d,e,f,z}

 dist(b) = min[old dist(b),dist(a)+w(a,b)]

dist(b) = min[∞,0+22|

dist(b) = 22

dist(c) = 16

dist(d)= 8 ← minimum node

dist(e) = ∞

dist(f) = ∞

dist(z) = ∞

So minimum node is selected in P i.e. node d.

Step 2 :

v = d

P = {a,d} T = {b,c,e,f,z}

dist(b) = min{old dist(b),dist(d)+w(b,d)}

dist(b) = min{22,8+∞}

dist(b) = 22

dist(c) = min{16,8+10} = 16

dist(e) = min{∞,8+∞} = 8

dist(f) = min{∞,8+6} = 14

dist(z) = min{∞,8+∞} = ∞

CS8391 DATA STRUCTURES UNIT - IV

 132

Step 3 :

v = f

P = {a,d,f} T = {b,c,e,z}

dist(b) = min{22,14+7} = 21

dist(c) = min{16,14+3} = 16

dist(e) = min{ ∞,14 +∞ } = ∞

dist(z) = min{∞, 14+9) = 23

Step 4 :

v = c

P = {a,d,f,c} T = {b,e,z}

dist(b)= min{21,16+20} = 21

dist(e) = min{∞ ,16+4}= 20

dist(z) = min{23,16+10} = 23

Step 5:

v = e

P = (a,d,f,c,e(T = |b,z|

dist(b) =min|21,20+2| = 21

dist(z) =min|23,20+4)= 23

Step 6:

v = b

P = (a,d,f,c,e,b) T = (z)

dist(z) = min(23,21+2) = 23.

Now the target vertex for finding the shortest path is z. Hence the length of the shortest path

from the vertex a to z is 23. The shortest path shown below

PART A

1. Define graph. [L1]

2. Define directed graph or digraph. [L1]

3. Define undirected graph. [L1]

4. Define path in a graph. [L1]

5. Define a cycle in a graph. [L1]

6. Define a strongly connected graph. [L1]

GRAPHS - REPRESENTATION OF GRAPHS

CS8391 DATA STRUCTURES UNIT - IV

 133

7. Define a weakly connected graph. [L1]

8. Define a weighted graph. [L1]

9. Define adjacency matrix. [L1]

10. What does traversing a graph mean? State the different ways of traversing a graph.[L1]

11. What is a simple graph? [L1]

12. When a graph is said to be bi-connected? (APR/MAY 2010) [L2]

13. What are the applications of graph? [L1]

14. How a graph is represented? [L1]

15. Define complete graph. [L1]

16. Define acyclic graph. [L1]

17. What is activity node graph? [L1]

18. Define indegree and outdegree of a graph. [L1]

19. When does a graph become a tree? [L1]

20. Define connected components. [L1]

21. What is breadth-first search? [L1]

22. Give the applications of DFS. [L1]

23. Differentiate BFS and DFS. [L1]

24. What is topological sort? Give algorithm. [L1]

25. What is a minimum spanning tree? [L1]

26. When a graph is said to be bipartite ? [L2]

27. Define a depth first spanning tree. [L1]

28. What are the methods to solve minimum spanning tree? [L1]

29. What is the minimum number of spanning trees possible for a complete graph with n

vertices? [L1]

PART-B

1. Explain in detail about various types of Graphs. [Pg.No:111] [L1]

2. Explain in detail different ways of representation of Graphs. [Pg.No:114] [L1]

3. Explain Graph traversal with suitable algorithm and example. (or)

Explain breadth first search algorithm for traversal of any graph with suitable

examples. [Nov-Dec 2014] [Pg.No:115] [L2]

4. Explain depth first search algorithm for traversal of any graph with suitable

BREADTH FIRST SEARCH & DEPTH FIRST SEARCH

TOPOLOGICAL SORT

MINIMUM SPANNING TREE

CS8391 DATA STRUCTURES UNIT - IV

 134

examples.[Nov-Dec 2015] [Pg.No:120] [L2]

5. Using Dijiktra’s algorithm, find the shortest path from the source to all other Nodes

[Nov-Dec 2014, Nov-Dec 2015] [Pg.No:130] [L4]

PART A

1. Define graph.

A graph is a collection of two sets of V and E where V is finite non empty set of vertices and

E is a finite non empty set of edges.

Vertices are nothing but the nodes in the graph and two adjacent vertices are joined by edges.

The graph is denoted by G = {V, E}.

Example:

2. Define directed graph or digraph.

If an edge between any two nodes in a graph is directionally oriented, a graph is called as

directed .it is also referred as digraph.

Example:

3. Define undirected graph.

If an edge between any two nodes in a graph is not directionally oriented, a graph is called as

undirected .it is also referred as unqualified graph

Example:

4. Define path in a graph.

A path in a graph is defined as a sequence of distinct vertices each adjacent to the next except

possibly the first vertex and last vertex is different.

Example:

GRAPHS - REPRESENTATION OF GRAPHS

CS8391 DATA STRUCTURES UNIT - IV

 135

From the diagram, the path from V1 to V2 is V1,V2,V3.

5. Define a cycle in a graph.

A cycle is a path containing at least three vertices such that the starting and the ending vertices

are the same

Example:

6. Define a strongly connected graph

A graph is said to be a strongly connected graph, if for every pair of distinct vertices there is

a directed path from every vertex to every other vertex. It is also referred as a complete graph.

Example:

7. Define a weakly connected graph.

A directed graph is said to be a weakly connected graph if any vertex doesn’t have a directed

path to any other vertices.

Example:

8. Define a weighted graph.

A graph is said to be a weighted graph if every edge in the graph is assigned some weight or

value. The weight of an edge is a positive value that may be representing the distance between

the vertices or the weights of the edges along the path.

Example:

9. Define adjacency matrix.

The adjacency matrix A, for a graph G = (V, E) with n vertices is an n*n matrix, such that

Aij=1,if there is an edge Vi to Vj

Aij=0,if there is no edge.

CS8391 DATA STRUCTURES UNIT - IV

 136

10. What does traversing a graph mean? State the different ways of traversing a graph.

Traversing a graph means visiting all the nodes in the graph. The two important graph

traversal methods are

 Depth first traversal or depth first search (DFS)

 Breadth first traversal or breadth first search (BFS)

11. What is a simple graph?

A simple graph is a graph, which has not more than one edge between a pair of nodes than

such a graph is called a simple graph.

12. When a graph is said to be bi-connected? (APR/MAY 2010)

A connected undirected graph is bi-connected if there is no vertices whose removal

disconnects the rest of the graph.

13. What are the applications of graph?

 In computer networking such as Local Area Network(LAN), wide Area Networking

(WAN) internetworking the graph is used.

 In telephone cabling graph theory is effectively used.

 In job scheduling algorithm the graph is used.

14. How a graph is represented?

There are two way of representing the graph are

 Adjacency matrix representation

 Adjacency list representation

15. Define complete graph.

A complete graph is a graph in which there is an edge between every pair of vertices. A

complete graph n vertices will have n(n-1)/2 edges.

Number of vertices is 4

Number of edges is 6

16. Define acyclic graph.

A directed graph which has no cycles is referred to acyclic graph. It is abbreviated as DAG

→ Directed Acyclic Graph.

17. What is activity node graph?

Activity node graph represents a set of activity’s and scheduling constraints. Each node

represent activity (task) and an edge represent the next activity.

CS8391 DATA STRUCTURES UNIT - IV

 137

18. Define indegree and outdegree of a graph.

Indegree

Indegree of a vertex in a digraph is the number of edges that are incident on it.

Outdegree

Outdegree of vertex is the number of edges that leave the vertex.

Eg:

Indegree(V1) = 1

Indegree(V2) = 1

Outdegree(V3) = 1

Outdegree(V4) = 1

19. When does a graph become a tree?

A graph can be a tree it is connected.

20. Define connected components.

Undirected Graphs

A undirected graph is ‘connected ‘ if and only if a depth first search starting from any

node visits every node.

Biconnectivity

A connected undirected graph is biconnected if there are no vertices if there are no

vertices whose removal disconnects the rest of the graph.

21. What is breadth-first search?

Breath First Search (BFS) of a graph, G starts from an unvisited vertex u. Then all unvisited

vertices vi adjacent to u are visited and then all unvisited vertices wj adjacent to vi are visited

and so on. The traversal terminates when there are no more nodes to visit.

22. Give the applications of DFS.

 Finding connected component.

 Topological sorting.

 Finding 2-(edge or vertex) connected components.

BREADTH FIRST SEARCH & DEPTH FIRST SEARCH

CS8391 DATA STRUCTURES UNIT - IV

 138

 Finding 3-(edges or vertex)-connected components.

 Finding the bridge of a graph.

 Checking the acyclicity of the directed graph.

23. Differentiate BFS and DFS

Sl.NO DFS BFS

1 Backtracking is possible from a dead

end

Backtracking is not possible.

2 Vertices from which exploration is

incomplete are processed in a LIFO

order.

The vertices to be explored are organized

as a FIFO queue.

3 Search is done in one particular

direction.

The vertices in the same level are

maintained parallel.

24. What is topological sort? Give algorithm.

Topological sort is defined as an ordering of vertices in a directed acyclic graph. Such that if

there is a path from Vi to Vj, then appears after Vi in the ordering.

 Find the vertex with no incoming edges.

 Print the vertex and remove it along with its edges from the graph.

 Apply the sample strategy to the rest of the graph.

 Finally all recorded vertices give topological sorted list.

25. What is a minimum spanning tree?

A minimum spanning tree of an undirected graph G is a tree formed from graph edges that

connects all the vertices of G at the lowest total cost.

26. When a graph is said to be bipartite ?

A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V such

that every edge connects a vertex in U to one in V. A bipartite graph is a graph that does not

contain any odd-length cycles.

27. Define a depth first spanning tree.

The tree that is formulated by depth first search on a graph is called as depth first spanning

tree. The depth first spanning tree consists of tree edges and back edges.

TOPOLOGICAL SORT

MINIMUM SPANNING TREE

CS8391 DATA STRUCTURES UNIT - IV

 139

28. What are the methods to solve minimum spanning tree?

 Prims algorithm.

 Kruskal’s algorithm.

29. What is the minimum number of spanning trees possible for a complete graph with n

vertices?

There are n
n-2

 number of spanning trees for a complete graph with n vertices. For example if

there are 3 vertices in a complete graph i.e. K3 then there are 3
3-2

=3 spanning trees possible.

