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UNIT IV NON LINEAR DATA STRUCTURES - GRAPHS     

 

Definition – Representation of Graph – Types of graph - Breadth-first traversal - Depth-first 

traversal – Topological Sort – Bi-connectivity – Cut vertex – Euler circuits – Applications of 

graphs.  

 

4.1 Definition - RESENTATION OF GRAPHS 

 

 A graph G = {V, E} consists of a set of vertices V and set of edges E. 

 Vertices are referred to as nodes in graph and the line joining the two vertices are referred 

to as Edges. 

 

Types of Graphs 

Graphs are of two types 

 Directed graphs. 

 Undirected Graphs. 

 

(i) Directed Graphs 

Directed graph is a graph which consists of directed edges. It is also referred as Digraph. 

 

 

 

 

 

 

Fig: 4.1 Directed graphs. 

 

In Directed graph, the edges between the vertices are ordered. E1 is the edge between the 

vertices V1 and V2. 

 V1 is called the Head and V2 is called the Tail. 

 So, E1 is a set of (V1, V2) and not of (V2, V1). 

 

(ii) Undirected Graphs: 

 Undirected graph is a graph, which consists of undirected edges. 

 

 

 

 

 

 

Fig: 4.2 undirected graphs. 
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 In Undirected graph, the edges between the vertices are not ordered. 

 So, E1 is a set of (V1, V2) or (V2, V1). 

 

 

Terms Related To Trees 

 

 Adjacent nodes : two nodes are adjacent if they are connected by an edge 

 Path: a sequence of vertices that connect two nodes in a graph 

 Length of path of graph: is the number of edges in the path 

 In-degree of a node x in G is the number of edges coming to x. 

 Out-degree of x is the number of edges leaving x. 

 

Degree and Neighbor: 

Let G be an undirected graph 

 The degree of a node x is the number of edges that have x as one of their end nodes 

 The neighbors of x are the nodes adjacent to x 

 

Weighted Graphs: 

 

A graph is said to be weighted graph if every edge in the graph is assigned a weight or value. 

It can be either a directed or an undirected graph. 

 

 

 

 

 

 

Fig: 4.3 weighted graphs. 

Complete Graph: 

 

 A complete graph is a graph in which there is an edge between every pair of vertices. 

 A complete graph with n vertices will have n(n - 1) /2 edges. 

 

 

 

 

 

 

Fig: 4.4 complete graphs. 
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Sub Graph 

A sub graph G’ of G is a graph G such that the set of vertices and set of edges of G’ are 

proper subset of the set of edges of G. 

 

 

 

 

 

Fig: 4.5 Sub graphs. 

 

Connected Graphs 

An undirected graph is said to be connected if for every pair of distinct vertices Vi and Vj, 

there is a path from Vi to Vj in G. 

 

 

 

Fig: 4.6 Connected graphs. 

 

 

Strongly Connected Graphs: 

A directed graph is said to be strongly connected if and only if, for each pair of distinct 

vertices Vi and Vj, there is a path from Vi to Vj in G. 

 

 

 

 

 

 

Fig: 4.7 strongly connected graphs. 

 

 

Cyclic Graphs 

A directed graph is said to be a cyclic graph in which no vertex is repeated except the first 

and last vertex are the same. 

 

 

 

Cycle = A -> B-> C ->A 

Fig: 4.8 Directed Cyclic graphs. 
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An undirected graph is said to be a cyclic graph in which if any edge appears more than once 

it appears with the same orientation. 

 

 

 

 

Fig: 4.9 Undirected Cyclic graphs. 

 

Acyclic Graphs 

A graph is said to be a acyclic graph if it has no cycles. 

 

 

 

 

 

  DAG – Directed acyclic graph (no specific cycle) 

 

 

 

 

 

Undirected acyclic graph 

 

Fig: 4.10 Acyclic graphs. 

 

4.2 TYPES OF GRAPHS -Representation 

There are two representations of graphs: 

 Adjacency matrix representation 

 Adjacency lists representation 

(i) Representing the graph as adjacency matrix 

 In this representation, each graph of n nodes is represented by an n x n matrix A, that is, a 

two-dimensional array A. 

 The nodes are labeled 1,2,…,n. 

A[i][j] = 1 if (i,j) is an edge 

A[i][j] = 0 if (i,j) is not an edge 

 

Data Structures for Graphs as Adjacency Matrix 

 A two-dimensional matrix or array that has one row and one column for each node in the 

graph 
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 For each edge of the graph (Vi, Vj), the location of the matrix at row i and column j is 1 

 All other locations are 0 

 For an undirected graph, the matrix will be symmetric along the diagonal 

 For a weighted graph, the adjacency matrix would have the weight for edges in the graph, 

zeros along the diagonal, and infinity (∞) every place 

Advantage 

 Simple to implement 

 Easy and fast to tell if a pair (i,j) is an edge: simply check if A[i][j] is 1 or 0 

Disadvantage 

 Even if there are few edges, the matrix takes O(n2) in memory 

 

(ii) Representing the graph as adjacency list 

A graph of n nodes is represented by a one-dimensional array L of linked lists, where 

 A list of pointers, one for each node of the graph 

 L[i] is the linked list containing all the nodes adjacent from node i. 

 The nodes in the list L[i] are in no particular order 

 

Data Structures for Graphs as Adjacency List 

 A list of pointers, one for each node of the graph. 

 These pointers are the start of a linked list of nodes that can be reached by one edge of 

the graph. 

 For a weighted graph, this list would also include the weight for each edge. 

 

4.3  BREADTH-FIRST SEARCH 

 

Graph traversal is technique used for searching a vertex in a graph. The graph traversal is 

also used to decide the order of vertices to be visit in the search process. A graph traversal finds 

the egdes to be used in the search process without creating loops that means using graph traversal 

we visit all verticces of graph without getting into looping path. 

 

There are two graph traversal techniques and they are as follows... 

1. BFS (Breadth First Search) 

2. DFS (Depth First Search) 

BFS (BREADTH FIRST SEARCH) 

BFS traversal of a graph, produces a spanning tree as final result. Spanning Tree is a graph 

without any loops. We use Queue data structure with maximum size of total number of vertices 

in the graph to implement BFS traversal of a graph. 

We use the following steps to implement BFS traversal... 

Step 1: Define a Queue of size total number of vertices in the graph. 
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Step 2: Select any vertex as starting point for traversal. Visit that vertex and insert it into 

the Queue. 

Step 3: Visit all the adjacent vertices of the verex which is at front of the Queue which is 

not visited and insert them into the Queue. 

Step 4: When there is no new vertex to be visit from the vertex at front of the Queue then 

delete that vertex from the Queue. 

Step 5: Repeat step 3 and 4 until queue becomes empty. 

Step 6: When queue becomes Empty, then produce final spanning tree by removing unused 

edges from the graph 

Example: 

Consider the following example graph to perform BFS traversal  
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Application of breadth first search 

 To check whether the graph is connected or not 

 

Program for breadth first search 

 

#include<stdio.h> 

#include<conio.h> 

int a[20][20],q[20],visited[20],n,i,j,f=0,r=-1; 

void bfs(int v) { 

 for (i=1;i<=n;i++) 

   if(a[v][i] && !visited[i]) 

    q[++r]=i; 

 if(f<=r) { 

  visited[q[f]]=1; 

  bfs(q[f++]); 

 } 

} 

void main() { 

 int v; 

 clrscr(); 

 printf("\n Enter the number of vertices:"); 

 scanf("%d",&n); 

 for (i=1;i<=n;i++) { 
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  q[i]=0; 

  visited[i]=0; 

 } 

 printf("\n Enter graph data in matrix form:\n"); 

 for (i=1;i<=n;i++) 

   for (j=1;j<=n;j++) 

    scanf("%d",&a[i][j]); 

 printf("\n Enter the starting vertex:"); 

 scanf("%d",&v); 

 bfs(v); 

 printf("\n The node which are reachable are:\n"); 

 for (i=1;i<=n;i++) 

   if(visited[i]) 

    printf("%d\t",i); else 

    printf("\n Bfs is not possible"); 

 getch(); 

} 

 

Output: 

Enter Number of Vertices:4 

Enter graph data in Matrix form:  

1 0     1    0 

0    0     1    1 

0    1     0    1 

1    1     1    1 

 

Enter the Starting Vertex: 1 

 

The nodes which are reachable are 

 

1 2       3     4 

 

4.4  DEPTH FIRST SEARCH 

 

DFS (Depth First Search) 

DFS traversal of a graph, produces a spanning tree as final result. Spanning Tree is a graph 

without any loops. We use Stack data structure with maximum size of total number of vertices 

in the graph to implement DFS traversal of a graph. 

 

We use the following steps to implement DFS traversal... 

Step 1: Define a Stack of size total number of vertices in the graph. 

Step 2: Select any vertex as starting point for traversal. Visit that vertex and push it on to 

the Stack. 

Step 3: Visit any one of the adjacent vertex of the verex which is at top of the stack which is 

not visited and push it on to the stack. 
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Step 4: Repeat step 3 until there are no new vertex to be visit from the vertex on top of the 

stack. 

Step 5: When there is no new vertex to be visit then use back tracking and pop one vertex 

from the stack. 

Step 6: Repeat steps 3, 4 and 5 until stack becomes Empty. 

Step 7: When stack becomes Empty, then produce final spanning tree by removing unused 

edges from the graph 

 

Example: 
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Application of Depth First Search 

 To check whether the undirected graph is connected or not. 

 To check whether the connected undirected graph is biconnected or not. 

 To check the Acyclicity of the directed graph. 

 

 

Program for Depth First Search 

 

     #include<stdio.h> 

#include<conio.h> 

int a[20][20],reach[20],n; 

void dfs(int v)  

{ 

 int i; 

 reach[v]=1; 

 for (i=1;i<=n;i++) 

   if(a[v][i] && !reach[i])  

{ 

  printf("\n %d->%d",v,i); 

  dfs(i); 

} 

} 

void main()  

{ 

 int i,j,count=0; 

 clrscr(); 

 printf("\n Enter number of vertices:"); 

 scanf("%d",&n); 

 for (i=1;i<=n;i++)  

{ 

  reach[i]=0; 

  for (j=1;j<=n;j++) 

     a[i][j]=0; 
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 } 

 printf("\n Enter the adjacency matrix:\n"); 

 for (i=1;i<=n;i++) 

   for (j=1;j<=n;j++) 

    scanf("%d",&a[i][j]); 

 dfs(1); 

 printf("\n"); 

 for (i=1;i<=n;i++) { 

  if(reach[i]) 

     count++; 

 } 

 if(count==n) 

   printf("\n Graph is connected"); else 

   printf("\n Graph is not connected"); 

 getch(); 

} 

 

OUTPUT: 

Enter Number of Vertices:4 

Enter the Adjacency Matrix:  

0 1     0    1 

1    1     1    1 

0    1     1    0 

0    1     1    1 

 

 

12 

23 

24 

 

Graph is connected 

 

4.5 TOPOLOGICAL SORTING 

 

Algorithm: 

1. From a given graph find a vertex with no incoming edges. Delete it along with an the 

edges outgoing from it. If there are more than one such vertices then break the tie 

randomly. 

2. Note the vertices that are deleted. 

3. All these recorded vertices give topologically sorted list. 

 

Example 1: 

 

 

 

 

A C 

B D 

E 
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Choose vertex B, because it has no incoming edge, delete it along with its adjacent edges. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6 BI CONNECTED GRAPH 

 

 An undirected graph is called Biconnected if there are two vertex-disjoint paths 

between any two vertices. 

  In a Biconnected Graph, there is a simple cycle through any two vertices.  

By convention, two nodes connected by an edge form a biconnected graph, but this 

does not verify the above properties. For a graph with more than two vertices, the 

above properties must be there for it to be Biconnected. 

 

Following are some examples. 

 

 
 

 

 

 

Delete B A C 

D 

E Delete A 
C 

D 

E 
Delete D 

Sorted List B 

Sorted List B, A 

Sorted List B, A, D 

Delete C C 

E 
E 

Delete E 

Sorted List B, A, D, C 

Sorted List B, A, D, C, E 

https://www.geeksforgeeks.org/wp-content/uploads/Biconnected11.png
https://www.geeksforgeeks.org/wp-content/uploads/Biconnected1.png
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Fig: 4.11 Bi-connected graphs. 

 

 A connected graph is Bi connected if it is connected and doesn’t have any Articulation 

Point.  

 We mainly need to check two things in a graph. 

1) The graph is connected. 

2) There is not articulation point in graph. 

 We start from any vertex and do DFS traversal. In DFS traversal, we check if there is any 

articulation point.  

 If we don’t find any articulation point, then the graph is Biconnected. 

  Finally, we need to check whether all vertices were reachable in DFS or not. If all 

vertices were not reachable, then the graph is not even connected. 

 

4.7  CUT VERTEX - Articulation Points (or Cut Vertices) in a Graph 

 

Definition: 

 A vertex V is an Undirected graph G is called a cut vertex if removing it disconnects the graph. 

 The cut vertex is also called as articulation point. 

 The following example represents the concept of cut vertex. 

 

 

 

https://www.geeksforgeeks.org/wp-content/uploads/Biconnected.png
https://www.geeksforgeeks.org/wp-content/uploads/Biconnected4.png
https://www.geeksforgeeks.org/wp-content/uploads/Biconnected5.png
https://www.geeksforgeeks.org/articulation-points-or-cut-vertices-in-a-graph/
https://www.geeksforgeeks.org/articulation-points-or-cut-vertices-in-a-graph/
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Fig: 4.12 Cut Vertex. 

 

Here Vertex C is a CUT VERTEX 

 On removing C we get the disconnected Component as. 

 

 

 

 

 

 

 

 

 

 

 

Fig: 4.13 Cut Vertex (Disconnected Component) 

 

 The concept of vertex are useful  for  designing reliable networks 

 

4.8  EULER CIRCUITS 

  

 In Graph Theory there is a famous problem known Konigsberg Bridge Problem. 

  In this problem the main theme was cross the seven bridge exactly once to visit various 

cities.  

 From this problem, the concept of Euler Circuit is developed. Let us define the 

terminologies Euler path and Euler Circuit. 

 

Euler Path:  

 A Path in a graph G is Called Euler Path if it includes every edge exactly once and every 

vertex gets visited.  

 Euler Circuit on graph G is an Euler path that visits each vertex of graph G and uses 

every edge of G. 

 

 

 

 

A 

B 

C 

E 

G 

F 

D 

A 

B D 

E 

F 

G 
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For Example  

 

 

 

 

 

 

 

Fig: 4.13 Euler Circuit 

 

The Euler Circuit is A-B-E-A-D-B-C-E-D-C-A 

 

4.9 APPLICATION OF GRAPHS 

 

 In Computer networking such as Local Area Network (LAN), Wide Area Networking 

(WAN), internetworking. 

 In Telephone cabling graph theory is effectively used 

 In Job Scheduling algorithm 

 

4.9.1 FINDING SHORTEST PATH 

 

Shortest Path Algorithm 

The shortest path algorithm determines the minimum cost of the path from source to 

every other vertex. There are two types of shortest path problem such as 

1. The single source shortest path problem. 

2. The all pair shortest path problem. 

 

The single source shortest path algorithm finds the minimum cost from single source 

vertex to all other vertices. Dijkstra’s algorithm is used to solve this problem which follows 

the greedy technique. 

 

All pairs shortest path problem finds the shortest distance from each vertex to all other vertices. 

To solve this problem dynamic programming technique known as floyd’s algorithm is used. 

 

These algorithms are applicable to both directed and undirected weighted graphs provided 

that they do not contain a cycle of negative length. 

 

 

 

 

B 

A C 

E D 
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DIJKSTRA'S SHORTEST PATH 

 

The Dijkstra's shortest path algorithm suggests the shortest path from some source node to 

the some other destination node. The source node or the node from we start measuring the 

distance is called the start node and the destination node is called the end node. In this algorithm 

we start finding the distance from the start node and find all the paths from it to neighbouring 

nodes. Among those which ever is the nearest node that path is selected. This process of finding 

the nearest node is repeated till the end node. Then whichever is the path that path is called the 

shortest path. 

 

Since in this algorithm all the paths are tried and then we are choosing the shortest path 

among them, this algorithm is solved by a greedy algorithm. One more thing is that we are 

having all the vertices in the shortest path and therefore the graph doesn't give the spanning tree.  

 

Example: 

 

P = Set which is for nodes which have already selected. 

T = Remaining node 

 

Step 1: 

v = a 

P = {a}, T = {b,c,d,e,f,z} 

       dist(b) = min[old dist(b),dist(a)+w(a,b)] 

dist(b) = min[∞,0+22| 

dist(b) = 22 

dist(c) = 16 

dist(d)= 8 ← minimum node 

dist(e) = ∞ 

dist(f) = ∞ 

dist(z) = ∞ 

So minimum node is selected in P i.e. node d. 

 

Step 2 : 

v = d 

P = {a,d} T = {b,c,e,f,z} 

dist(b) = min{old dist(b),dist(d)+w(b,d)} 

dist(b) = min{22,8+∞} 

dist(b) = 22 

dist(c) = min{16,8+10} = 16 

dist(e) = min{∞,8+∞} = 8 

dist(f) = min{∞,8+6} = 14 

dist(z) = min{∞,8+∞} = ∞ 
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Step 3 : 

v = f 

P = {a,d,f} T = {b,c,e,z} 

dist(b) = min{22,14+7} = 21 

dist(c) = min{16,14+3} = 16 

dist(e) = min{ ∞,14 +∞ } = ∞ 

dist(z) = min{∞, 14+9) = 23 

Step 4 : 

v = c 

P = {a,d,f,c} T = {b,e,z} 

dist(b)= min{21,16+20} = 21 

dist(e) = min{∞ ,16+4}= 20 

dist(z) = min{23,16+10} = 23 

Step 5: 

v = e 

P = (a,d,f,c,e( T = |b,z| 

dist(b) =min|21,20+2| = 21 

dist(z) =min|23,20+4)= 23 

 

Step 6: 

v = b 

P = (a,d,f,c,e,b) T = (z) 

dist(z) = min(23,21+2) = 23. 

Now the target vertex for finding the shortest path is z. Hence the length of the shortest path 

from the vertex a to z is 23. The shortest path shown below 

 

 

 

 

 

PART A 

 

 

 

1. Define graph.          [L1] 

2. Define directed graph or digraph.        [L1] 

3. Define undirected graph.         [L1] 

4. Define path in a graph.         [L1] 

5. Define a cycle in a graph.         [L1] 

6. Define a strongly connected graph.        [L1] 

GRAPHS - REPRESENTATION OF GRAPHS 
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7. Define a weakly connected graph.       [L1] 

8. Define a weighted graph.         [L1] 

9. Define adjacency matrix.         [L1] 

10. What does traversing a graph mean? State the different ways of traversing a graph.[L1] 

11. What is a simple graph?         [L1] 

12. When a graph is said to be bi-connected? (APR/MAY 2010)    [L2] 

13. What are the applications of graph?       [L1] 

14. How a graph is represented?        [L1] 

15.  Define complete graph.         [L1] 

16. Define acyclic graph.         [L1] 

17. What is activity node graph?        [L1] 

18. Define indegree and outdegree of a graph.      [L1] 

19. When does a graph become a tree?       [L1] 

20. Define connected components.         [L1] 

 

 

 

21. What is breadth-first search?        [L1] 

22. Give the applications of DFS.        [L1] 

23. Differentiate BFS and DFS.        [L1] 

 

 

 

24. What is topological sort? Give algorithm.      [L1] 

 

 

 

25. What is a minimum spanning tree?       [L1] 

26. When a graph is said to be bipartite ?        [L2] 

27. Define a depth first spanning tree.        [L1] 

28. What are the methods to solve minimum spanning tree?     [L1] 

29. What is the minimum number of spanning trees possible for a complete graph with n 

vertices?            [L1] 

 

PART-B 

 

1. Explain in detail about various types of Graphs. [Pg.No:111]     [L1] 

2. Explain in detail different ways of representation of Graphs. [Pg.No:114]   [L1] 

3. Explain Graph traversal with suitable algorithm and example.    (or) 

Explain breadth first search algorithm for traversal of any graph with suitable             

examples.  [Nov-Dec 2014] [Pg.No:115]       [L2] 

4. Explain depth first search algorithm for traversal of any graph with suitable             

BREADTH FIRST SEARCH & DEPTH FIRST SEARCH 

TOPOLOGICAL SORT 

MINIMUM SPANNING TREE  
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examples.[Nov-Dec 2015] [Pg.No:120]       [L2] 

5. Using Dijiktra’s algorithm, find the shortest path from the source to all other Nodes 

[Nov-Dec 2014, Nov-Dec 2015] [Pg.No:130]       [L4] 

 

PART A 

 

 

 

1. Define graph. 

A graph is a collection of two sets of V and E where V is finite non empty set of vertices and 

E is a finite non empty set of edges. 

Vertices are nothing but the nodes in the graph and two adjacent vertices are joined by edges. 

The graph is denoted by G = {V, E}. 

 

Example: 

 

 

 

2. Define directed graph or digraph. 

If an edge between any two nodes in a graph is directionally oriented, a graph is called as 

directed .it is also referred as digraph. 

 

Example: 

 

 

 

 

3. Define undirected graph. 

If an edge between any two nodes in a graph is not directionally oriented, a graph is called as 

undirected .it is also referred as unqualified graph 

 

Example: 

 

 

 

 

4. Define path in a graph. 

A path in a graph is defined as a sequence of distinct vertices each adjacent to the next except 

possibly the first vertex and last vertex is different. 

Example: 

 

 

GRAPHS - REPRESENTATION OF GRAPHS 
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From the diagram, the path from V1 to V2 is V1,V2,V3. 

 

5. Define a cycle in a graph. 

A cycle is a path containing at least three vertices such that the starting and the ending vertices 

are the same 

 

Example: 

 

 

 

6. Define a strongly connected graph 

A graph is said to be a strongly connected graph, if for every pair of distinct vertices there is 

a directed path from every vertex to every other vertex. It is also referred as a complete graph. 

 

Example: 

 

 

 

 

7. Define a weakly connected graph. 

A directed graph is said to be a weakly connected graph if any vertex doesn’t have a directed 

path to any other vertices. 

 

Example: 

 

 

 

8. Define a weighted graph. 

A graph is said to be a weighted graph if every edge in the graph is assigned some weight or 

value. The weight of an edge is a positive value that may be representing the distance between 

the vertices or the weights of the edges along the path. 

 

Example: 

 

 

 

9. Define adjacency matrix. 

The adjacency matrix A, for a graph G = (V, E) with n vertices is an n*n matrix, such that 

Aij=1,if there is an edge Vi to Vj 

Aij=0,if there is no edge. 
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10. What does traversing a graph mean? State the different ways of traversing a graph. 

Traversing a graph means visiting all the nodes in the graph. The two important graph 

traversal methods are 

 Depth first traversal or depth first search (DFS) 

 Breadth first traversal or breadth first search (BFS) 

 

11. What is a simple graph? 

A simple graph is a graph, which has not more than one edge between a pair of nodes than 

such a graph is called a simple graph. 

 

12. When a graph is said to be bi-connected? (APR/MAY 2010) 

A connected undirected graph is bi-connected if there is no vertices whose removal 

disconnects the rest of the graph. 

 

13. What are the applications of graph? 

 In computer networking such as Local Area Network(LAN), wide Area Networking 

(WAN) internetworking the graph is used. 

 In telephone cabling graph theory is effectively used. 

 In job scheduling algorithm the graph is used. 

 

14. How a graph is represented? 

There are two way of representing the graph are 

 Adjacency matrix representation 

 Adjacency list representation 

 

15.  Define complete graph. 

A complete graph is a graph in which there is an edge between every pair of vertices. A 

complete graph n vertices will have n(n-1)/2 edges. 

 

 

Number of vertices is 4 

Number of edges is 6 

 

 

16. Define acyclic graph. 

A directed graph which has no cycles is referred to acyclic graph. It is abbreviated as DAG 

→ Directed Acyclic Graph. 

 

17. What is activity node graph? 

Activity node graph represents a set of activity’s and scheduling constraints. Each node 

represent activity (task) and an edge represent the next activity. 
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18. Define indegree and outdegree of a graph. 

Indegree 

Indegree of a vertex in a digraph is the number of edges that are incident on it. 

Outdegree 

Outdegree of vertex is the number of edges that leave the vertex. 

Eg: 

 

 

Indegree(V1) = 1 

Indegree(V2) = 1 

Outdegree(V3) = 1 

Outdegree(V4) = 1 

 

19. When does a graph become a tree? 

A graph can be a tree it is connected. 

 

20. Define connected components. 

Undirected Graphs 

A undirected graph is ‘connected ‘ if and only if a depth first search starting from any 

node visits every node. 

Biconnectivity 

A connected undirected graph is biconnected if there are no vertices if there are no 

vertices whose removal disconnects the rest of the graph. 

 

 

 

 

 

 

 

 

 

21. What is breadth-first search? 

Breath First Search (BFS) of a graph, G starts from an unvisited vertex u. Then all unvisited 

vertices vi adjacent to u are visited and then all unvisited vertices wj adjacent to vi are visited 

and so on. The traversal terminates when there are no more nodes to visit. 

 

22. Give the applications of DFS. 

 Finding connected component. 

 Topological sorting. 

 Finding 2-(edge or vertex) connected components. 

BREADTH FIRST SEARCH & DEPTH FIRST SEARCH 
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 Finding 3-(edges or vertex)-connected components. 

 Finding the bridge of a graph. 

 Checking the acyclicity of the directed graph. 

 

 

23. Differentiate BFS and DFS 

Sl.NO DFS BFS 

1 Backtracking is possible from a dead 

end 

Backtracking is not possible. 

2 Vertices from which exploration is 

incomplete are processed in a LIFO 

order. 

The vertices to be explored are organized 

as a FIFO queue. 

3 Search is done in one particular 

direction. 

The vertices in the same level are 

maintained parallel. 

 

 

 

 

24. What is topological sort? Give algorithm. 

Topological sort is defined as an ordering of vertices in a directed acyclic graph. Such that if 

there is a path from Vi to Vj, then appears after Vi in the ordering. 

 Find the vertex with no incoming edges. 

 Print the vertex and remove it along with its edges from the graph. 

 Apply the sample strategy to the rest of the graph. 

 Finally all recorded vertices give topological sorted list. 

 

 

 

25. What is a minimum spanning tree? 

A minimum spanning tree of an undirected graph G is a tree formed from graph edges that 

connects all the vertices of G at the lowest total cost. 

 

26. When a graph is said to be bipartite ? 

A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V such 

that every edge connects a vertex in U to one in V. A bipartite graph is a graph that does not 

contain any odd-length cycles. 

 

27. Define a depth first spanning tree. 

The tree that is formulated by depth first search on a graph is called as depth first spanning 

tree. The depth first spanning tree consists of tree edges and back edges. 

 

TOPOLOGICAL SORT 

MINIMUM SPANNING TREE  
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28. What are the methods to solve minimum spanning tree? 

 Prims algorithm. 

 Kruskal’s algorithm. 

 

29. What is the minimum number of spanning trees possible for a complete graph with n 

vertices?  

There are n
n-2

 number of spanning trees for a complete graph with n vertices. For example if 

there are 3 vertices in a complete graph i.e. K3 then there are 3
3-2

=3 spanning trees possible.  




