
CS8392 OBJECT ORIENTED PROGRAMMING UNIT III

 1

UNIT III EXCEPTION HANDLING AND I/O
Exceptions - exception hierarchy - throwing and catching exceptions – built-in exceptions,
creating own exceptions, Stack Trace Elements. Input / Output Basics – Streams – Byte
streams and Character streams – Reading and Writing Console – Reading and Writing Files.

3.1 EXCEPTION

Exception is an abnormal condition. An exception is an unwanted or unexpected event,

which occurs during the execution of a program i.e. at run time, which disrupts the normal

flow of the program’s instructions.

An exception can occur for many different reasons. Following are some scenarios where

an exception occurs.

 A user has entered an invalid data.

 A file that needs to be opened cannot be found.

 A network connection has been lost in the middle of communications or the JVM has

run out of memory.

Some of these exceptions are caused by user error, others by programmer error, and

others by physical resources that have failed in some manner.

3.1.1 Exception Handling

The exception handling in java is one of the powerful mechanisms to handle the runtime

errors so that normal flow of the application can be maintained.

Java smoothly handles various types of exceptions using well-defined exception handling

mechanism such as

 ClassNotFoundException

 RunTimeException

 ArrayIndexOutOfBoundException

 IOException

 FileNotFoundException

 NumberFormatException

3.1.2 Steps Involved In Exception Handling

 Hit the exception

 Throw the exception

 Catch the exception

 Handle the exception

3.1.3 Advantage of Exception Handling

The core advantage of exception handling is to maintain the normal flow of the

application. Exception normally disrupts the normal flow of the application that is why we

use exception handling. Let's take a scenario:

 statement 1;

 statement 2;

 statement 3;//exception occurs

 statement 4;

 statement 5;

Suppose there is 5 statements in your program and there occurs an exception at statement

3, rest of the code will not be executed i.e. statement 4 & 5 will not run. If we perform

CS8392 OBJECT ORIENTED PROGRAMMING UNIT III

 2

exception handling, rest of the statement will be executed. That is why we use exception

handling in java.

3.1.4 Types of Exception

There are mainly two types of exceptions: checked and unchecked where error is

considered as unchecked exception. The sun microsystem says there are three types of

exceptions:

1. Checked Exception

2. Unchecked Exception

3. Error

1. Checked Exception

The classes that extend Throwable class except RuntimeException and Error are known

as checked exceptions e.g.IOException, SQLException etc. Checked exceptions are

checked at compile-time.

2. Unchecked Exception

The classes that extend RuntimeException are known as unchecked exceptions e.g.

ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException etc.

Unchecked exceptions are not checked at compile-time rather they are checked at

runtime.

3. Error

Error is irrecoverable e.g. OutOfMemoryError, VirtualMachineError, AssertionError etc.

3.1.5 Uncaught Exceptions

When we don't handle the exceptions, they lead to unexpected program termination. Lets

take an example for better understanding.
class UncaughtException

{

 public static void main(String args[])

 {

 int a = 0;

 int b = 7/a; // Divide by zero, will lead to exception

 }

}

This will lead to an exception at runtime, hence the Java run-time system will construct

an exception and then throw it. As we don't have any mechanism for handling exception in

the above program, hence the default handler will handle the exception and will print the

details of the exception on the terminal.

CS8392 OBJECT ORIENTED PROGRAMMING UNIT III

 3

3.2 EXCEPTION HIERARCHY

All exception classes are subtypes of the java.lang.Exception class. The exception class is

a subclass of the Throwable class. Other than the exception class there is another subclass

called Error which is derived from the Throwable class.

Errors are abnormal conditions that happen in case of severe failures, these are not

handled by the Java programs. Errors are generated to indicate errors generated by the

runtime environment. Example: JVM is out of memory. Normally, programs cannot recover

from errors.

The Exception class has two main subclasses: IOException class and RuntimeException

Class.

CS8392 OBJECT ORIENTED PROGRAMMING UNIT III

 4

3.3 THROWING AND CATCHING EXCEPTIONS

Syntax

try

{

//block of code to monitor for an error

}

catch(ExceptionType object)

{

//Exception Handling code here

}

.

.

finally

{

// code placed here will always executed

}

Example Program: Command Line Argument

import java.io.*;

class DividerDemo

{

public static void main(String args[])

{

try

{

int a=Interger.parseInt(args[0]);

int b=Interger.parseInt(args[1]);

System.out.println(“Quotients” + a/b);

}

catch(ArithemeticEcxception e)

{

System.out.println(“Error in denominator”);

}

catch(ArrayIndexOutOfBoundsException e)

{

System.out.println(“Error in index values”);

}

catch(NumberFormatException n)

{

System.out.println(“Data type error”);

finally

{

System.out.println(“Finally Block”);

} } }

Output:

C:\java\jdk\bin>javac DividerDemo.java

C:\java\jdk\bin>java DividerDemo 1 0

Error in denominator

Finally Block

C:\java\jdk\bin>java DividerDemo

Error in index value

Finally Block

C:\java\jdk\bin>java DividerDemo 2 2

Quotient=1

Finally Block

C:\java\jdk\bin>javac DividerDemo a b

Data type error

Finally Block

CS8392 OBJECT ORIENTED PROGRAMMING UNIT III

 5

3.4 CREATING OWN EXCEPTIONS or USER-DEFINED EXCEPTION IN JAVA

Java provides us facility to create our own exceptions which are basically derived classes

of Exception. For example MyException in below code extends the Exception class.

We pass the string to the constructor of the super class- Exception which is obtained

using “getMessage()” function on the object created.
class MyException extends Exception

{

 public MyException(String s)

 {

 super(s);

 }

}

public class Main

{

 public static void main(String args[])

 {

 try

 {

 throw new MyException("CSECSE");

 }

 catch (MyException ex)

 {

 System.out.println("Caught");

 System.out.println(ex.getMessage());

 }

 }}

3.5 STACK TRACE ELEMENTS

 A stack trace is a listing of all pending method calls at a particular point in the

execution of a program.

 Stack trace listings are displayed whenever a Java program terminates with an uncaught

exception.

o PrintStackTrace method of the Throwable class- to access the text

description of a stack trace.

o getStackTrace method to get an array of StackTraceElement objects that can

be analyse in the program.

 For example:

Throwable t = new Throwable();

StackTraceElement[] frames = t.getStackTrace();

for (StackTraceElement frame : frames)

 The StackTraceElement class has methods to obtain the file name and line number, as

well as the class and method name, of the executing line of code.

 The toString method yields a formatted string containing all of this information.

OUTPUT:

Caught

CSECSE

CS8392 OBJECT ORIENTED PROGRAMMING UNIT III

 6

3.6 STREAMS & I/O (INPUT/ OUTPUT)

 In java, a stream is flow of data (bytes).

 Every stream has source and destination.

 Two fundamental types of streams are input stream and output stream.

o Output stream writes data into a file (or program or device)

o Input stream reads data from a file(or program or device)

o Error stream – eg: System.err.println("error message");

 Java program performs Input and Output (I/O) operation through streams.

 The java.io package has plenty of predefined stream classes.

 The java.io package classify the stream classes into two categories such as

o Byte Stream- classes handling input and output in the form of bytes.

o Character stream- classes handling input and output in the form of

characters.

3.6.1 ByteStream Classes

1. BufferedInputStream – Buffering Input

2. BufferedOutputStream – Buffering output

3. DataInputStream – Reading primitive streams

4. DataOutputStream – Writing primitive types

5. FileInputStream – Reading from file

6. FileOutputStream – Writing to file

7. InputStream – Performing Input operation

8. OutputStream – Predefined output operations

9. PrintStream – Output Stream that contains print() and println() method.

3.6.2 The Character stream Classes

1. BufferedReader – Buffering Input

2. BufferedWriter- Buffering Output

3. FileReader - Input stream that reads from file.

4. FileWriter - Output stream that writes to file.

5. InputStreamReader – Translating byte stream into a character stream

6. OutputStreamReader – Translating character stream into a byte stream

7. PrintWriter - Output Stream that contain print() and println() method.

8. Writer – Performing output operation

9. Reader – Performing input operation

3.6.3 Syntax for reading character streams

BufferedReader br= new BufferedReader(new InputStreamReader (System.in));

(or)

InputStreamReader reader = new InputStreamReader(System.in);

BufferedReader br= new BufferedReader (reader);

Example:

Class examp

{

public static void main(String args[])

{

int age;

String name;

InputStreamReader reader = new InputStremReader(System.in);

BufferedReader br = new BufferedReader(reader);

age=Integer.parseInt(br.readLine());

name=br.readLine();

}}

CS8392 OBJECT ORIENTED PROGRAMMING UNIT III

 7

3.6.4 Syntax for Reading byte Stream

 DataInputStream din = new DataInputStream (System.in);

Example:

DataInputStream din = new DataInputStream (System.in);

int a= Integer.parseInt(din.readLine());

String name=din.readLine();

Example program for reading input and displaying output:

import java.io.*;

class StudInfo

{

public static void main(String args[])throws IOException

{

String name;

int age,m1,m2,m3,total;

float avg;

DataInputStream din = new DataInputStream (System.in);

System.out.println(“Enter the name: ”);

name=din.readLine();

System.out.println(“Enter the Age: ”);

age=Integer.parseInt(din.readLine());

System.out.println(“Enter the Marks: ”);

m1=Integer.parseInt(din.readLine());

m2=Integer.parseInt(din.readLine());

m3=Integer.parseInt(din.readLine());

total=m1+m2+m3;

avg=total/3;

System.out.println(“Name: ” + name);

System.out.println(“Age: ” + age);

System.out.println(“Average: ”+avg);

}

}

Input:

Enter the Name : Raj

Enter the Age: 21

Enter the Marks: 69 72 88

Output:

Name : Raj

Age : 21

Avg: 76

CS8392 OBJECT ORIENTED PROGRAMMING UNIT III

 8

3.7 FILE HANDLING

File handing in java comes under IO operations. Java IO package java.io classes are specially

provided for file handling in java. Some of the common file handling operations are;

1. Create file

2. Delete file

3. Read file

4. Write file

5. Change file permissions

3.7.1 Create File

 File f = new File(“abc.txt”);

 This line won’t create any physical file, First it will check is there any physical file already

available with abc.txt name or not.

 If it is already available then f pointing to that file.

 If it is not already available this line won’t create any physical file and just it create a java file

object to represent the name abc.txt.

 Code for to create file

File f = new File(“abc.txt”);

System.out.println(f.exists); //false

f.createNewFile();

System.out.println(f.exists()); //true

 Code for to directory file

File f = new File(“foldername”);

System.out.println(f.exists); //false

f.mkdir();

System.out.println(f.exists()); //true

 Code for to create file in specific directory

File f = new File(“foldername”);

f.mkdir();

//File f1 = new File(“foldername”,”demo.txt”); or

File f1 = new File(f,”demo.txt”);

f1.createNewFile();

File f = new File(“E:\\xyz”,”demo.txt);

f.createNewFile();

File Class Constructors

1. File f = new File(String name);

2. File f = new File(String subdir, String name);

3. File f = new File(File subdir, String name);

Methods

1. boolean exists();

2. boolean createNewFile();

3. boolean mkdir();

4. boolean isDirectory();

5. String list[]();

6. Long length();

7. Boolean delete();

CS8392 OBJECT ORIENTED PROGRAMMING UNIT III

 9

Write a program to print the names of all files and sub directories present in C:\\folder

import java.io.File;

class demo{

public static void main(String args[]) {

int count=0;

File f = new File(“C:\\foldername”);

String s[]=f.list();

for(String s1:s){

count++;

System.out.println(s1);

}

System.out.println(“The total Number : “ +count);

}

}

Write a program to display only file name

import java.io.File;

class demo{

public static void main(String args[]) {

int count=0;

File f = new File(“C:\\foldername”);

String s[]=f.list();

for(String s1:s){

File f1=new File(f,s1);

If(f1.isFile()){ // for directory isDirectory()

count++;

System.out.println(s1);

}

System.out.println(“The total Number : “ +count);

}

}

3.7.2 FileWriter

We can use FileWriter Object to write character data to the file.

Constructor

1. FileWriter fw = new FileWriter(String name);

2. FileWriter fw = new FileWriter(File f);

The above 2 constructor meant for overwriting existing data. Instead of overwriting if we want to

perform append operation then we have to use the following 2 constructor

3. FileWriter fw = new FileWriter(String name, boolean append);

4. FileWriter fw = new FileWriter(File f, boolean append);

Note: If the specified file is not available then all the above constructors will create that file.

CS8392 OBJECT ORIENTED PROGRAMMING UNIT III

 10

Methods of FileWriter class:

1. write(int ch);

2. write(char[] ch);

3. write(String s);

4. flush();

5. close();

Example program for Writing data into the file

import java.io.*;

class Demo{

public static void main(String args[])throws Exception{

FileWriter fw = new FileWriter(“abc.txt”);

fw.write(99);

fw.write(“at\n is a pet animal”);

char[] ch1={‘a’,’b’,’c’,’d’};

fw.write(ch1);

bw.flush();

bw.close();

}

}

3.7.3 FileReader

 We can use FileReader to read character data from the file

Constructor

1. FileReader fr = new FileReader(String fname);

2. FileReader fr = new FileReader(File f);

Methods

1. int read();

o It attempts to read next character from the file and return its Unicode value.

o If there is no next character then we will get -1.

2. int read(char[] ch);

o it attempts to read enough characters from the file into char[] and return the

number of character copied from the file into char[].

File f = new File(“abc.txt”);

char ch[] = new char[(int)f.length()];

FileReader fr = new FileReader(“abc.txt”);

fr.read(ch);

for(char ch1:ch){

System.out.println(ch1);

}

cat

is a pet animal

abcd

CS8392 OBJECT ORIENTED PROGRAMMING UNIT III

 11

Example program for reading data from the file

import java.io.*;

class Demo{

public static void main(String args[])throws Exception{

FileReader fr = new FileReader (“abc.txt”);

int i=fr.read();

while(i!=-1){

System.out.println((char)i);

I=fr.read();

}

}

}

3.7.4 BufferedWriter

Usage of FileWriter and FileReader is not recommended because, while writing Data by FileWriter we have to

insert line separator manually, which is varied from system to system. It is difficult to the programmer.

Constructor:

1. BufferedWriter bw = new BufferedWriter(Writer w);

2. BufferedWriter bw = new BufferedWriter(Writer w, int buffersize);

Methods of BufferedWriter:

1. Write(int ch)

2. write(char[] ch)

3. write(String s)

4. flush()

5. close()

6. newline()

Example program for Writing data into the file

import java.io.*;

class Demo{

public static void main(String args[])throws Exception{

FileWriter fw = new FileWriter(“abc.txt”);

BufferedWriter bw=new BufferedWriter(fw);

bw.write(100);

bw.newLine();

char[] ch1={‘a’,’b’,’c’,’d’};

bw.write(ch1);

bw.newLine();

bw.write(“Durga”);

bw.newLine();

bw.write(“Software Solutions”);

bw.flush();

bw.close();

}

}

d

abcd

Durga

Software Solutions

CS8392 OBJECT ORIENTED PROGRAMMING UNIT III

 12

3.7.5 BufferedReader

The main advantage of BufferedReader over FileReader is we can read data line by line in

addition to character by character, which is more convenient to the programmer.

Constructor

1. BufferedReader br = new BufferedReader(Reader r);

2. BufferedReader br = new BufferedReader(Reader r, int buffersize);

Methods:

1. int read();

2. int read(char ch[]);

3. void close();

4. String readLine();

It attempts to read next line from the file and return it, if it is available. If the next line

not available, then it will returns null.

Example program for reading data from the file

import java.io.*;

class Demo{

public static void main(String args[])throws Exception{

FileReader fr = new FileReader(“abc.txt”);

BufferedReader br = new BufferedReader(fr);

String line = br.readLine();

While(line!=null) {

 System.out.println(line);

 line=br.readLine();

}

br.close();

}

}

3.7.6 PrintWriter

 It is the most enhanced writer to write character data to the file.

 The main advantage of PrintWriter is we can write any type of primitives type data directly to

the file.

Constructor

1. PrintWriter pw = new PrintWriter(String filename);

2. PrintWriter pw = new PrintWriter(File f);

3. PrintWriter pw = new PrintWriter(Writer w);

Methods

1. print(char ch);

2. print(int i);

3. print(double d);

4. print(boolean b);

5. print(String s);

6. println(char ch);

7. println(int i);

8. println(double d);

9. println(boolean b);

10. println(String s);

CS8392 OBJECT ORIENTED PROGRAMMING UNIT III

 13

Example program

import java.io.*;

class Demo{

public static void main(String args[])throws Exception {

PrintWriter pw = new PrintWriter(“abc.txt”);

pw.write(100);

pw.println(100);

pw.println(true);

pw.println(‘c’);

pw.println(“sample”);

pw.flush();

pw.close();

}

}

Write a program to merge data from 2 files into a third file

import java.io.*;

class Demo{

public static void main(String args[])throws Exception {

PrintWriter pw = new PrintWriter(“abc.txt”);

BufferedReader br = new BufferedReader(new FileReader(“file1.txt”));

String line=br.readLine();

while(line!=null){

pw.println(line);

line=br.readLine();

}

br = new BufferedReader(new FileReader(“file2.txt”));

line=br.readLine();

while(line!=null){

pw.println(line);

line=br.readLine();

}

pw.flush();

br.close();

pw.close();

}

d100
true
c
sampe

File1.txt

222

333

444

555

File2.txt

AAA

BBB

CCC

DDD

File1.txt

222

333

444

555

AAA

BBB

CCC

DDD

CS8392 OBJECT ORIENTED PROGRAMMING UNIT III

 14

UNIT III PART-A

1. Give any two methods available in Stack trace Element. N/D 2010

2. Define Assertions and give its syntax. N/D 2010

3. What is an exception? A/M 2011

4. What are stack trace elements? N/D 2012

5. How to throw an exception. A/M 2014

Regulation 2017

Define run time exceptions

What is the use of assert keyword

What happens when the statement: int value=25/0; is executed?

Give an example for reading data from file using File Input Stream.

PART-B

1. Define Exception and explain its different types. With appropriate examples using Java. (8) N/D 2011

2. Discuss on exception handling in detail. (16) A/M 2012

3. What is exception? How to throw an exception? Give an example. (8) A/M 2013

4. What is exception? why it is needed? Describe the exception hierarchy. Write notes on stack trace

elements. Give example. (16) N/D 2013 A/M 2016

5. Define Exception and explain its different types with example. (8) A/M 2015

6. Explain the different types of exceptions. (4) A/M 2018

7. Explain the exception hierarchy [Marks 8] N/D 2010

8. Describe briefly about exception hierarchy in Java. (8) A/M 2013

9. Explain the concept of throwing and catching exception in java. [Marks 8] A/M 2011

10. Explain throwing and catching exception. (16) N/D 2012

11. Explain the task of catching exception with example. (8) A/M 2011

12. What is finally class? How to catching exception? Write an example. (8) A/M 2013
13. What do you mean by error handling? Describe the throwing and catching exceptions supported in

generic programming. Give example. (16) N/D 2015

14. How do you analyse the stack trace element. (8) A/M 2011

15. What are stack trace Elements? Explain. (8) N/D 2011

16. Write short notes on stack trace elements. (4) A/M 2018

17. Design a java program to handle array index out of bound exception. (8) A/M 2018

2017 Regulation

N/D 2018

1. Explain the different types of exceptions and the exception hierarchy in java with appropriate

example. (13)

2. What are the input and output streams? Explain them with illustration. (13)

A/M 2019

3. Give an example for nested try statement in java source file and explain.

4. Write a note on built-in exception

5. Create an IN file in Java to store the details of 100 students using a STUDENT class. Read the

details from IN file, convert all the letters in IN file to lowercase letters and write it into OUT file.

Java Nested try block

The try block within a try block is known as nested try block in java.

Why use nested try block

Sometimes a situation may arise where a part of a block may cause one error and the entire block

itself may cause another error. In such cases, exception handlers have to be nested.

Syntax:

 try

 {

 statement 1;

CS8392 OBJECT ORIENTED PROGRAMMING UNIT III

 15

 statement 2;

 try

 {

 statement 1;

 statement 2;

 }

 catch(Exception e)

 {

 }

 }

 catch(Exception e)

 {

 }

Java nested try example
class Excep6{
 public static void main(String args[]){

 try{

 try{

 System.out.println("going to divide");

 int b =39/0;

 }catch(ArithmeticException e){System.out.println(e);}

 try{

 int a[]=new int[5];

 a[5]=4;

 }

catch(ArrayIndexOutOfBoundsException e){System.out.println(e);}

 System.out.println("other statement);

 }

catch(Exception e){System.out.println("handeled");}

 System.out.println("normal flow..");

 }

 }

